Chevron Left
Generate Synthetic Images with DCGANs in Keras に戻る

Coursera Project Network による Generate Synthetic Images with DCGANs in Keras の受講者のレビューおよびフィードバック

4.5
243件の評価

コースについて

In this hands-on project, you will learn about Generative Adversarial Networks (GANs) and you will build and train a Deep Convolutional GAN (DCGAN) with Keras to generate images of fashionable clothes. We will be using the Keras Sequential API with Tensorflow 2 as the backend. In our GAN setup, we want to be able to sample from a complex, high-dimensional training distribution of the Fashion MNIST images. However, there is no direct way to sample from this distribution. The solution is to sample from a simpler distribution, such as Gaussian noise. We want the model to use the power of neural networks to learn a transformation from the simple distribution directly to the training distribution that we care about. The GAN consists of two adversarial players: a discriminator and a generator. We’re going to train the two players jointly in a minimax game theoretic formulation. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

人気のレビュー

AA

2020年5月26日

The course was well equipped. It gave me the basic idea of how GAN works and how to implement it. If you want to get started with GAN then it can be a better course to lead you.

AG

2020年6月13日

In this course, you will learn about a lot of different ways to join ideas to make more complex and interesting knowledge of keras

フィルター:

Generate Synthetic Images with DCGANs in Keras: 26 - 47 / 47 レビュー

by SHANKAR

2020年6月14日

by Gangone R

2020年7月4日

by Javier F B

2020年4月24日

by Ayush G

2020年10月6日

by Umit K

2020年9月9日

by Rajasinghe R

2020年5月28日

by Santiago G

2020年8月22日

by VETTORI F M

2020年8月30日

by p s

2020年6月23日

by tale p

2020年6月16日

by 321810306031 A C H

2020年7月13日

by Ebin Z

2020年6月9日

by Diego A P P

2020年6月10日

by Svitlana Z

2020年5月5日

by Shakshi S

2020年8月6日

by Srinadh R B

2020年9月11日

by Deep G

2020年5月21日

by sarithanakkala

2020年6月23日

by vijayalode

2020年6月24日

by Akshita S

2020年7月26日

by Simon S R

2020年8月31日

by Zhiqiu L

2022年2月10日