Classification with Transfer Learning in Keras

4.5
144件の評価
提供:
Coursera Project Network
5,198人がすでに登録済みです
このガイド付きプロジェクトでは、次のことを行います。

How to implement transfer learning with Keras and TensorFlow

How to use transfer learning to solve image classification

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 1.5 hour long project-based course, you will learn to create and train a Convolutional Neural Network (CNN) with an existing CNN model architecture, and its pre-trained weights. We will use the MobileNet model architecture along with its weights trained on the popular ImageNet dataset. By using a model with pre-trained weights, and then training just the last layers on a new dataset, we can drastically reduce the training time required to fit the model to the new data . The pre-trained model has already learned to recognize thousands on simple and complex image features, and we are using its output as the input to the last layers that we are training. In order to be successful in this project, you should be familiar with Python, Neural Networks, and CNNs. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

Deep LearningInductive TransferConvolutional Neural NetworkMachine LearningTensorflow

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Import Libraries and Helper functions

  2. Download the Pet dataset and extract relevant annotations

  3. Add functionality to create a random batch of examples and labels

  4. Create a new model with MobileNet v2 and a new fully connected top layer

  5. Create a data generator function and calculate training and validation steps

  6. Get predictions on a test batch and display the test batch along with prediction

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

CLASSIFICATION WITH TRANSFER LEARNING IN KERAS からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。