Image Colorization using TensorFlow 2 and Keras

提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Learn how to work with images in the .npy file format.

Learn how to create a custom CNN model.

Create an app to allow users to colorize black and white images using the model you trained.

Clock1 hour 30 minutes
Beginner初級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

This guided project is about image colorization using TensorFlow2 and Keras. Image colorization comes under the computer vision domain. In this project you will learn how to build a convolutional neural network(CNN) using Tensorflow2 and Keras. While you are watching me code, you will get a cloud desktop with all the required software pre-installed. This will allow you to code along with me. After all, we learn best with active, hands-on learning. Special Feature: 1) Explanation of the process of image colorization. 2) How to reshape data to fit a CNN. 3) Explanation of each layer in a CNN. 4) Create a Streamlit app to allow users to colorize a black and white image using the model you trained. Note: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

  • Deep Learning
  • Convolutional Neural Network
  • Tensorflow
  • Streamlit
  • keras

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Preprocess grayscale images.

  2. Extract colors from colorful images to provide as inputs to the model.

  3. Build the CNN with TensorFlow2 and Keras.

  4. Save the model.

  5. Load the pre-trained model in a streamlit app.

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。