Image Noise Reduction with Auto-encoders using TensorFlow

4.7
105件の評価
提供:
Coursera Project Network
4,596人がすでに登録済みです
このガイド付きプロジェクトでは、次のことを行います。

Develop an understanding of how Auto encoders work.

Be able to apply an auto encoder to reduce noise in given images.

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 2-hour long project-based course, you will learn the basics of image noise reduction with auto-encoders. Auto-encoding is an algorithm to help reduce dimensionality of data with the help of neural networks. It can be used for lossy data compression where the compression is dependent on the given data. This algorithm to reduce dimensionality of data as learned from the data can also be used for reducing noise in data. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Tensorflow pre-installed. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

  • Data Science
  • Deep Learning
  • Noise Reduction
  • Machine Learning
  • Autoencoder

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Introduction and Importing Libraries

  2. Data Preprocessing

  3. Adding Noise

  4. Building and Training a Classifier

  5. Building the Autoencoder

  6. Training the Autoencoder

  7. Denoised Images

  8. Composite Model

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

IMAGE NOISE REDUCTION WITH AUTO-ENCODERS USING TENSORFLOW からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。