Interpretable Machine Learning Applications: Part 4

提供:
このガイド付きプロジェクトでは、次のことを行います。

Set up a machine learning application in a "zero configuration" environment such as Google's Colab(oratory) Research platform.

Set up and configure the What-If Tool to analyze the behavior of exemplary machine learning prediction models.

1.5 hours
中級
ダウンロード不要
分割画面ビデオ
英語
デスクトップのみ

In this 1-hour long guided project, you will learn how to use the "What-If" Tool (WIT) in the context of training and testing machine learning prediction models. In particular, you will learn a) how to set up a machine learning application in Python by using interactive Python notebook(s) on Google's Colab(oratory) environment, a.k.a. "zero configuration" environment, b) import and prepare the data, c) train and test classifiers as prediction models, d) analyze the behavior of the trained prediction models by using WIT for specific data points (individual basis), e) moving on to the analysis of the behavior of the trained prediction models by using WIT global basis, i.e., all test data considered. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

  • Data Analysis

  • Data scientist

  • Machine learning project management

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Set up the environment for the "What-If" tool (WIT) as an extension in Jupyter and as a Google's Colaboratory notebook, including importing of the dataset (e.g., white wine quality data)

  2. Train classifiers, e.g., Decision Tree and Random Forest, as exemplary machine learning  prediction models to make predictions about the quality of white wines.

  3. Launch the What-If Tool (WIT) widget. This task will allow us to get a first understanding on how our prediction model(s) behave at both individual and global levels.

  4. Use the What-If Tool (WIT) features to explain the behavior of a prediction model on an individual basis.

  5. Use the What-If Tool (WIT) advanced features to explain the behavior of a prediction model on an individual basis.

  6. Use the What-If Tool (WIT) features to explain the behavior of a prediction model on a global basis.

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

ガイド付きプロジェクトを購入することによって、ガイド付きプロジェクトを完了するために必要なものすべてが得られます。これには、開始する必要のあるファイルとソフトウェアを含むWebブラウザを介したクラウドデスクトップワークスペースへのアクセスの他、専門家によるステップバイステップのビデオ講座が含まれます。

ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。

ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。

ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。

ガイド付きプロジェクトは払い戻しの対象外です。すべての返金ポリシーを表示する

ガイド付きプロジェクトには学費援助が利用できません。

ガイド付きプロジェクトでは監査を使用できません。

ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。

はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。

分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。