Language Classification with Naive Bayes in Python

4.6
134件の評価
提供:
Coursera Project Network
4,466人がすでに登録済みです
このガイド付きプロジェクトでは、次のことを行います。

H​ow to clean and preprocess data for language classification

H​ow to train and assess a Multinomial Naive Bayes Model

H​ow to use subword units to counteract the effects of class imbalance in language classification

Clock60-75 minutes
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 1-hour long project, you will learn how to clean and preprocess data for language classification. You will learn some theory behind Naive Bayes Modeling, and the impact that class imbalance of training data has on classification performance. You will learn how to use subword units to further mitigate the negative effects of class imbalance, and build an even better model.

あなたが開発するスキル

StatisticsMachine LearningNatural Language Processing

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Exploratory data analysis of raw data, as well as some basic visualization

  2. Data cleaning and preprocessing relevant for task

  3. Theory behind and training of a Multinomial Naive Bayes Model

  4. M​aking adjustments to model to take into account class imbalance using theory behind Naive Bayes

  5. U​sing subword units to further counteract class imbalance and improve model performance

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

講師

レビュー

LANGUAGE CLASSIFICATION WITH NAIVE BAYES IN PYTHON からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。