Chevron Left
Logistic Regression with NumPy and Python に戻る

Coursera Project Network による Logistic Regression with NumPy and Python の受講者のレビューおよびフィードバック

4.5
380件の評価
48件のレビュー

コースについて

Welcome to this project-based course on Logistic with NumPy and Python. In this project, you will do all the machine learning without using any of the popular machine learning libraries such as scikit-learn and statsmodels. The aim of this project and is to implement all the machinery, including gradient descent, cost function, and logistic regression, of the various learning algorithms yourself, so you have a deeper understanding of the fundamentals. By the time you complete this project, you will be able to build a logistic regression model using Python and NumPy, conduct basic exploratory data analysis, and implement gradient descent from scratch. The prerequisites for this project are prior programming experience in Python and a basic understanding of machine learning theory. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, NumPy, and Seaborn pre-installed....

人気のレビュー

AS
2020年8月29日

Very helpful for learning logistic regression without using any libraries. Before taking this project one should have a clear understanding of Logistic Regression, then it will be very helpful

CB
2020年5月23日

Its a good course. Instructor is good. Lot of concepts cleared and enough practice has done.

フィルター:

Logistic Regression with NumPy and Python: 1 - 25 / 48 レビュー

by Sambhaw S

2020年8月2日

Excellent course but requires prior theoretical knowledge of logistic regression and linear regression. I have a suggestion for the instructor. If possible, can you attach conceptual videos that are already available on Coursera like liner regression lecture by Andrew Ng or any other lecture, then it will be beneficial for students. Overall a good project for starters like me.

Thank you

by Arnab S

2020年8月30日

Very helpful for learning logistic regression without using any libraries. Before taking this project one should have a clear understanding of Logistic Regression, then it will be very helpful

by CHINMAY B

2020年5月24日

Its a good course. Instructor is good. Lot of concepts cleared and enough practice has done.

by MV

2021年11月8日

W​ell explained all the basic components of gradient descent. Exactly as advertised.

by Juan M B

2020年6月7日

Great tool to practice what i learned in Andrew Yng's ML course about Log. Reg.

by Ramya G R

2020年6月9日

I really enjoyed this course. Thank you for your valuable teaching.

by Punam P

2020年4月4日

Thank You... Very nice and valuable knowledge provided.

by Thulasi R I 2 B 0

2020年9月26日

Able to follow project. Thanks for guiding

by Mari M

2020年5月14日

Clear explanation and good content. Thanks

by Pulkit S

2020年6月18日

good project got to learn a lot of things

by Shruti S

2020年7月21日

Great course ! very informative

Thanks :)

by Krishna M T

2020年8月12日

It is one of the best guided project.

by Melissa d C S

2020年6月21日

Please, keep doing good job

by Pulkit D

2020年10月16日

good course a lot to learn

by Erick M A

2020年7月20日

Excelente aprovechamiento

by Pritam B

2020年5月14日

it was an nice experience

by Shreyas R

2020年4月25日

Amazing. Must do this

by Diego R G

2020年5月21日

Great project!

by jagadeeswari N

2020年5月28日

nice overview

by Anisetti S K

2020年4月23日

well balanced

by Ayesha N

2020年6月16日

its was good

by Dinh-Duy L

2020年7月13日

Really good

by Nandivada P E

2020年6月15日

Nice course

by Dipak S s

2020年4月24日

fine courxe

by Saikat K 1

2020年9月8日

Amazing