Machine Learning Interpretable: SHAP, PDP y permutacion

提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Conocer los fundamentos de la interpretabilidad de modelos

Aplicar librerías para la interpretabilidad de modelos como: SHAP, Partial Dependence Plot y Permutation importance

Desarrollar modelos interpretables de Random Forest, LightGBM, etc

Clock2 horas
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dotsスペイン語
Laptopデスクトップのみ

Este proyecto es un curso práctico y efectivo para aprender a generar modelos de Machine Learning interpretables. Se explican en profundidad diferentes técnicas de interpretabilidad de modelos como: SHAP, Partial Dependence Plot, Permutation importance, etc que nos permitirá entender el porqué de las predicciones. Gracias a esto, aprenderás a entrenar modelos Glassbox que puedas entender el porqué de sus decisiones.

あなたが開発するスキル

  • Python Programming
  • SHAP
  • Machine Learning Interpretability
  • MAchine Learning interpretable

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Introducción a la interpretabilidad de modelos en Machine Learning

  2. Desarrollo del modelo de Machine Learning

  3. Importancia de las variables: Permutation Importance

  4. Efecto de las variables: Partial Dependence Plots

  5. Entendiendo las predicciones individuales: SHAP

  6. SHAP con LightGBM

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。