Mining Quality Prediction Using Machine & Deep Learning

4.8
26件の評価
提供:
Coursera Project Network
2,789人がすでに登録済みです
このガイド付きプロジェクトでは、次のことを行います。

Train Artificial Neural Network models to perform regression tasks

Understand the theory and intuition behind regression models and train them in Scikit Learn

Understand the difference between various regression models KPIs such as MSE, RMSE, MAE, R2, adjusted R2

Clock1.5 hours
Beginner初級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 1.5-hour long project-based course, you will be able to: - Understand the theory and intuition behind Simple and Multiple Linear Regression. - Import Key python libraries, datasets and perform data visualization - Perform exploratory data analysis and standardize the training and testing data. - Train and Evaluate different regression models using Sci-kit Learn library. - Build and train an Artificial Neural Network to perform regression. - Understand the difference between various regression models KPIs such as MSE, RMSE, MAE, R2, and adjusted R2. - Assess the performance of regression models and visualize the performance of the best model using various KPIs.

あなたが開発するスキル

regression modelsDeep LearningArtificial Intelligence (AI)Machine LearningPython Programming

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Understand the problem statement and business case

  2. Import libraries/datasets and perform data exploration

  3. Perform data visualization

  4. Prepare the data before model training

  5. Train and evaluate a linear regression model

  6. Train and evaluate a decision tree and random forest models

  7. Understand the theory and intuition behind artificial neural networks

  8. Train an artificial neural network to perform regression task

  9. Compare models and calculate regression KPIs

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

MINING QUALITY PREDICTION USING MACHINE & DEEP LEARNING からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。