Get Familiar with ML basics in a Kaggle Competition

4.4
14件の評価
提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

How to get familiar with Machine Learning basics and how to start a model prediction using basic supervised Machine Learning models.

Build, train, test and evaluate the performance of some models.

Submit your first solution on the Kaggle platform.

Clock2 hours
Beginner初級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 1-hour long project, you will be able to understand how to predict which passengers survived the Titanic shipwreck and make your first submission in an Machine Learning competition inside the Kaggle platform. Also, you as a beginner in Machine Learning applications, will get familiar and get a deep understanding of how to start a model prediction using basic supervised Machine Learning models. We will choose classifiers to learn, predict, and make an Exploratory Data Analysis (also called EDA). At the end, you will know how to measure a model performance, and submit your model to the competition and get a score from Kaggle. This guided project is for beginners in Data Science who want to do a practical application using Machine Learning. You will get familiar with the methods used in machine learning applications and data analysis. In order to be successful in this project, you should have an account on the Kaggle platform (no cost is necessary). Be familiar with some basic Python programming, we will use numpy and pandas libraries. Some background in Statistics is appreciated, like as knowledge in probability, but it’s not a requirement.

あなたが開発するスキル

  • Python Programming
  • Machine Learning (ML) Algorithms
  • Predictive Modelling
  • Kaggle

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Getting Started with Kaggle

  2. Exploratory Data Analysis (EDA)

  3. Preprocessing I - Taking care of Missing Values

  4. Preprocessing II - Taking care of Missing Values

  5. Preprocessing III - Encoding Categorical Data

  6. Split the Train & Test datasets

  7. Building our Machine Learning Models

  8. Submit your project on Kaggle

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

GET FAMILIAR WITH ML BASICS IN A KAGGLE COMPETITION からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。