Introdução a Machine Learning em uma Competição do Kaggle

提供:
このガイド付きプロジェクトでは、次のことを行います。

Como se familiarizar com conceitos básicos de Machine Learning criando um modelo de predição.

Construa, treine, teste avalia a performance de alguns modelos. 

Realize a submissão da sua primeira solução da competição no Kaggle.

2 horas
初級
ダウンロード不要
分割画面ビデオ
ポルトガル語(ブラジル)
デスクトップのみ

Neste curso de 1 hora, com base em projeto, você será capaz de entender como prever quais passageiros sobreviveriam ao naufrágio do Titanic e fazer sua primeira submissão em uma competição de Aprendizado de Máquina dentro da plataforma do Kaggle. Além disso, você, como iniciante em Machine Learning, irá se familiarizar e entender como iniciar um modelo preditivo usando conceitos básicos de aprendizado supervisionado. Vamos escolher classificadores para aprender, prever e testar os dados. Realizaremos uma Análise Exploratória de Dados (também chamada de EDA) para adquirir um bom entendimento sobre os dados que iremos trabalhar. Ao final, você saberá como medir o desempenho de um modelo, e será capaz de enviar seu modelo para a competição e obter uma pontuação do Kaggle. Nota: Este curso funciona melhor para aprendizes de regiões que tem como idioma o Português. Você encontra a versão desse mesmo conteúdo disponível em inglês para aprendizes da América do Norte em: https://www.coursera.org/projects/ml-basics-kaggle-competition Este projeto é indicado para iniciantes em Ciência de Dados que desejam fazer uma aplicação prática usando Aprendizado de Máquina e análise de dados. Para ter sucesso neste projeto é desejado que você tenha conhecimentos básicos em linguagem Python, utilizaremos bibliotecas como Numpy e Pandas. Você também deve previamente ter uma conta Google para utilizar o Google Colab e também uma conta na plataforma Kaggle (ambas sem custo).

あなたが開発するスキル

  • Aprendizagem de Máquina

  • Machine Learning

  • Python Programming

  • Ciência de Dados

  • Kaggle

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Introdução ao Kaggle

  2. Análise Exploratória dos Dados (EDA)

  3. Pré processamento I - Analisando Dados Faltantes

  4. Pré-processamento II - Analisando Dados Faltantes

  5. Pré-processamento III - Codificando Dados Categóricos

  6. Dividindo o conjunto de dados em treinamento e teste

  7. Construindo nossos modelos de aprendizado de máquina

  8. Realize a submissão do seu projeto no Kaggle

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

ガイド付きプロジェクトを購入することによって、ガイド付きプロジェクトを完了するために必要なものすべてが得られます。これには、開始する必要のあるファイルとソフトウェアを含むWebブラウザを介したクラウドデスクトップワークスペースへのアクセスの他、専門家によるステップバイステップのビデオ講座が含まれます。

ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。

ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。

ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。

ガイド付きプロジェクトは払い戻しの対象外です。すべての返金ポリシーを表示する

ガイド付きプロジェクトには学費援助が利用できません。

ガイド付きプロジェクトでは監査を使用できません。

ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。

はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。

分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。