Creating Multi Task Models With Keras

4.6

51件の評価

提供:

2,375人がすでに登録済みです

この無料ガイド付きプロジェクトでは、次のことを行います。

Creating multi-task models with Keras

Training multi-task models with Keras

この実践的な経験を面接でアピールする

2 hours
中級
ダウンロード不要
分割画面ビデオ
英語
デスクトップのみ

In this 1 hour long guided project, you will learn to create and train multi-task, multi-output models with Keras. You will learn to use Keras' functional API to create a multi output model which will be trained to learn two different labels given the same input example. The model will have one input but two outputs. A few of the shallow layers will be shared between the two outputs, you will also use a ResNet style skip connection in the model. If you are familiar with Keras, you have probably come across examples of models that are trained to perform multiple tasks. For example, an object detection model where a CNN is trained to find all class instances in the input images as well as give a regression output to localize the detected class instances in the input. Being able to use Keras' functional API is a first step towards building complex, multi-output models like object detection models. We will be using TensorFlow as our machine learning framework. The project uses the Google Colab environment. You will need prior programming experience in Python. You will also need prior experience with Keras. Consider this to be an intermediate level Keras project. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, Convolutional Neural Networks, and optimization algorithms like gradient descent but want to understand how to use use Keras to write custom, more complex models than just plain sequential neural networks. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

必要事項

Prior programming experience in Python. Conceptual understanding of Neural Networks. Prior experience with TensorFlow and Keras is recommended.

あなたが開発するスキル

  • Deep Learning

  • Machine Learning

  • Tensorflow

  • Computer Vision

  • keras

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Introduction

  2. Create Dataset

  3. Dataset Generator

  4. Create Model

  5. Train the Model

  6. Final Predictions

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

CREATING MULTI TASK MODELS WITH KERAS からの人気レビュー

すべてのレビューを見る

よくある質問

ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。

ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。

ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。

ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。

はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。

分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。