Build Multilayer Perceptron Models with Keras
96件の評価

3,688人がすでに登録済みです
Build and train a multilayer perceptron (MLP) with Keras
Perform topic classification with neural networks
96件の評価
3,688人がすでに登録済みです
Build and train a multilayer perceptron (MLP) with Keras
Perform topic classification with neural networks
In this 45-minute long project-based course, you will build and train a multilayer perceptronl (MLP) model using Keras, with Tensorflow as its backend. We will be working with the Reuters dataset, a set of short newswires and their topics, published by Reuters in 1986. It's a very simple, widely used toy dataset for text classification. There are 46 different topics, some of which are more represented than others. But each topic has at least 10 examples in the training set. So in this project, you will build a MLP feed-forward neural network to classify Reuters newswires into 46 different mutually-exclusive topics. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Data Science
Deep Learning
Machine Learning
Tensorflow
keras
ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。
Project Overview and Import Libraries
Load the Reuters Dataset
Vectorize Sequences and One-hot Encode Class Labels
Build Multilayer Perceptron Model
Train Model
Evaluate Model on Test Data
ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です
分割画面のビデオで、講師が手順ごとにガイドします
MSにより
2020年7月31日easty-to-use, fast project accompanied by a general understanding of MPLs!
BBにより
2020年7月16日Professor taught course quite well and work load was bearable. Though it was soooooo easy course I would suggest Professor to increase the difficulty level by adding another week.
AMにより
2020年5月19日Nice project for practice. For those who are beginner it is very good for them to do practice.
CMにより
2021年10月3日This course is like learning to cook with microwave. Sufficiently easy for a great start. Can be followed up with course recommendations on data preprocessing, model tuning and evaluation, etc.
ガイド付きプロジェクトを購入することによって、ガイド付きプロジェクトを完了するために必要なものすべてが得られます。これには、開始する必要のあるファイルとソフトウェアを含むWebブラウザを介したクラウドデスクトップワークスペースへのアクセスの他、専門家によるステップバイステップのビデオ講座が含まれます。
ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。
ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。
ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。
ガイド付きプロジェクトは払い戻しの対象外です。すべての返金ポリシーを表示する。
ガイド付きプロジェクトには学費援助が利用できません。
ガイド付きプロジェクトでは監査を使用できません。
ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。
はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。
分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。