Neural Network from Scratch in TensorFlow

4.4
240件の評価
提供:
Coursera Project Network
7,505人がすでに登録済みです
このガイド付きプロジェクトでは、次のことを行います。

How to implement a neural network from scratch using TensorFlow.

How to solve a multi-class classification problem using the neural network implementation.

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 2-hours long project-based course, you will learn how to implement a Neural Network model in TensorFlow using its core functionality (i.e. without the help of a high level API like Keras). You will also implement the gradient descent algorithm with the help of TensorFlow's automatic differentiation. While it’s easier to get started with TensorFlow with the Keras API, it’s still worth understanding how a slightly lower level implementation might work in tensorflow, and this project will give you a great starting point. In order to be successful in this project, you should be familiar with python programming, TensorFlow basics, conceptual understanding of Neural Networks and gradient descent. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

Data ScienceDeep LearningMathematical OptimizationArtificial Neural NetworkTensorflow

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Create the Neural Network class

  2. Create a forward pass function

  3. Use the cross entropy loss with logits

  4. Create a predict function

  5. Create the main training mechanism and implement gradient descent with automatic differentiation

  6. Break down data-set in batches

  7. Apply the neural network model to solve a multi-class classification problem

  8. Plot the training results

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

NEURAL NETWORK FROM SCRATCH IN TENSORFLOW からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。