Real-time OCR and Text Detection with Tensorflow, OpenCV and Tesseract

3.7
132件の評価
提供:
Coursera Project Network
6,749人がすでに登録済みです
この無料ガイド付きプロジェクトでは、次のことを行います。

Train Tensorflow to recognize a Region of Interest (ROI) in an image or frame of a video.

Extract and enhance relevant image segments with OpenCV .

Use Tesseract to extract, export text data for use in real-time.

この実践的な経験を面接でアピールする

Clock2 hours
Advanced上級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 1-hour long project-based course, you will learn how to collect and label images and use them to train a Tensorflow CNN (convolutional neural network) model to recognize relevant areas of (typeface) text in any image, video frame or frame from webcam video. You will learn how to extract image segments that your detector has identified as containing text and enhance them using various image filters from the OpenCV module. Then you will learn how to pass the result image to Google's open-source OCR (Optical Character Recognition) software using the pytesseract python library and read the text to whatever form of output you like. All of this will be done on Windows, but can be accomplished with very little alteration on Linux as well. We will be using the IDLE development environment to write a single script to scan our video, webcam input, or array of images for text and read that text into our output. Tensorflow, the Tensorflow Object Detection API, Tesseract, the pytesseract library, labelImg for image annotation, OpenCV, and all other required software has already been installed for you in your Rhyme desktop. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

必要事項

Strong experience in Python. Familiarity with the command line (Windows).

あなたが開発するスキル

TensorflowDeep Learning in PythonObject DetectionOptical Character RecognitionComputer Vision

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Introduction to the Course

  2. Setting up our script

  3. Collect and Label Images for ROI Recognition

  4. Summary of Tensorflow Model Training -

  5. Capturing Input in the form of Webcam, Images or Video File

  6. Extract and Enhance ROI with OpenCV

  7. Use Tesseract to extract, export and use text data

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。