Real-time OCR and Text Detection with Tensorflow, OpenCV and Tesseract

4.1
48件の評価
提供:
Coursera Project Network
1,680人がすでに登録済みです
このガイド付きプロジェクトでは、次のことを行います。

Train Tensorflow to recognize a Region of Interest (ROI) in an image or frame of a video.

Extract and enhance relevant image segments with OpenCV .

Use Tesseract to extract, export text data for use in real-time.

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 1-hour long project-based course, you will learn how to collect and label images and use them to train a Tensorflow CNN (convolutional neural network) model to recognize relevant areas of (typeface) text in any image, video frame or frame from webcam video. You will learn how to extract image segments that your detector has identified as containing text and enhance them using various image filters from the OpenCV module. Then you will learn how to pass the result image to Google's open-source OCR (Optical Character Recognition) software using the pytesseract python library and read the text to whatever form of output you like. All of this will be done on Windows, but can be accomplished with very little alteration on Linux as well. We will be using the IDLE development environment to write a single script to scan our video, webcam input, or array of images for text and read that text into our output. Tensorflow, the Tensorflow Object Detection API, Tesseract, the pytesseract library, labelImg for image annotation, OpenCV, and all other required software has already been installed for you in your Rhyme desktop. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

TensorflowDeep Learning in PythonObject DetectionOptical Character RecognitionComputer Vision

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Set up a new Real Time Text Detection script

  2. Collect and Label Images for recognition of Region of Interest (ROI)

  3. Train Tensorflow to recognize Region of Interest (ROI)

  4. Capture webcam video stream, frames from a video file, or a static image

  5. Extract and enhance relevant image segments with OpenCV

  6. Use Tesseract to extract, export text data for use

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

  • ガイド付きプロジェクトを購入することによって、ガイド付きプロジェクトを完了するために必要なものすべてが得られます。これには、開始する必要のあるファイルとソフトウェアを含むWebブラウザを介したクラウドデスクトップワークスペースへのアクセスの他、専門家によるステップバイステップのビデオ講座が含まれます。

  • ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。

  • ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。

  • ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。

  • ガイド付きプロジェクトは払い戻しの対象外です。すべての返金ポリシーを表示する

  • ガイド付きプロジェクトには学費援助が利用できません。

  • ガイド付きプロジェクトでは監査を使用できません。

  • ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。

  • はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。

  • 分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。