Predicting Credit Card Fraud with R

4.4
14件の評価
提供:
ノーステキサス大学
このガイド付きプロジェクトでは、次のことを行います。

Use R to identify fraudulent credit card transactions with a variety of classification methods.

Create, train, and evaluate decision tree, naïve Bayes, and Linear discriminant analysis classification models using R

Generate synthetic samples to improve the performance of your models.

Clock1.5 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

Welcome to Predicting Credit Card Fraud with R. In this project-based course, you will learn how to use R to identify fraudulent credit card transactions with a variety of classification methods and use R to generate synthetic samples to address the common problem of classification bias for highly imbalanced datasets—the class of interest (fraud) represents less than 1% of the observations. Class imbalance can make it difficult to detect the effect independent variables have on fraud, ultimately leading to higher misclassification rates. Fixing the imbalance allows the minority class (fraud) to be better learned by the classifier algorithms. After completing the project, you will be able to apply the methods introduced in the project to a wide range of classification problems that typically confront class imbalance, including predicting loan default, customer churn, cancer diagnosis, early high school dropout risk, and malware detection. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

  • Data Analysis
  • Machine Learning
  • R Programming

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Task 1: Explore why imbalanced datasets are problematic for classification algorithms.

  2. Task 2: Use R to explore a dataset.

  3. Task 3: Create random testing and training datasets using the caret package in R.

  4. Task 4: Use R to synthetically balance your training dataset using three techniques from the smotefamily package.

  5. Task 5: Train three classification algorithms (decision tree, naïve Bayes, and linear discriminant analysis) using the natively imbalanced dataset, and generate the predictions for the test dataset.

  6. Task 6: Use R to visually compare your models using the recall, precision, and F measure classification accuracy metrics.

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

PREDICTING CREDIT CARD FRAUD WITH R からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。