Quantitative Text Analysis and Scaling in R

提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Run an unsupervised document scaling model Plot the output of the unsupervised scaling model

Clock1 hour
Beginner初級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

By the end of this project, you will learn about the concept of document scaling in textual analysis in R. You will know how to load and pre-process a data set of text documents by converting the data set into a corpus and document feature matrix. You will know how to run an unsupervised document scaling model and explore and plot the scaling outcome.

あなたが開発するスキル

  • Text Analysis
  • Document Scaling
  • Unsupervised Learning
  • Data Visualization (DataViz)
  • Text Corpus

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Load textual data into R and turn it into a corpus object and understand the concept of document scaling in textual analysis

  2. Extract meta-data from text document filenames and subset the data frame to exclude unwanted data

  3. Tokenize and clean the dataset and convert the data into a document feature matrix

  4. Run an unsupervised document scaling model and explore the output

  5. Plot the output of the unsupervised scaling model

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。