Regression with Automatic Differentiation in TensorFlow

4.7
55件の評価
提供:
Coursera Project Network
4,049人がすでに登録済みです
このガイド付きプロジェクトでは、次のことを行います。

Understanding tensor constants, and tensor variables in TensorFlow.

Understanding automatic differentiation in TensorFlow.

Using automatic differentiation to solve a linear regression problem in TensorFlow.

Clock1.5 hours
Beginner初級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 1.5 hour long project-based course, you will learn about constants and variables in TensorFlow, you will learn how to use automatic differentiation, and you will apply automatic differentiation to solve a linear regression problem. By the end of this project, you will have a good understanding of how machine learning algorithms can be implemented in TensorFlow. In order to be successful in this project, you should be familiar with Python, Gradient Descent, Linear Regression. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

Mathematical OptimizationMachine LearningTensorflowLinear RegressionAutomatic Differentiation

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Tensor Constants

  2. Tensor Variables

  3. Automatic Differentiation

  4. Watching Tensors

  5. Persistent Tape

  6. Generating Data for Linear Regression

  7. Linear Regression

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

REGRESSION WITH AUTOMATIC DIFFERENTIATION IN TENSORFLOW からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。