Diabetic Retinopathy Detection with Artificial Intelligence

4.4
18件の評価
提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Understand the theory and intuition behind Deep Neural Networks, Residual Nets, and Convolutional Neural Networks (CNNs)

Build a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend

Assess the performance of trained CNN and ensure its generalization using various Key performance indicators.

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this project, we will train deep neural network model based on Convolutional Neural Networks (CNNs) and Residual Blocks to detect the type of Diabetic Retinopathy from images. Diabetic Retinopathy is the leading cause of blindness in the working-age population of the developed world and estimated to affect over 347 million people worldwide. Diabetic Retinopathy is disease that results from complication of type 1 & 2 diabetes and can develop if blood sugar levels are left uncontrolled for a prolonged period of time. With the power of Artificial Intelligence and Deep Learning, doctors will be able to detect blindness before it occurs.

あなたが開発するスキル

  • Deep Learning
  • Machine Learning
  • Python Programming
  • Artificial Intelligence(AI)
  • Computer Vision

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Understand the Problem Statement and Business Case

  2. Import Libraries and Datasets

  3. Perform Data Exploration and Visualization

  4. Perform Data Augmentation and Create Data Generator

  5. Understand the Theory and Intuition Behind Convolutional Neural Networks

  6. Build a ResNet Deep Neural Network Model

  7. Compile and Train the Deep Neural Network Model 

  8. Assess the Performance of the Trained Model

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

DIABETIC RETINOPATHY DETECTION WITH ARTIFICIAL INTELLIGENCE からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。