Explainable AI: Scene Classification and GradCam Visualization

4.7
46件の評価
提供:
Coursera Project Network
2,102人がすでに登録済みです
このガイド付きプロジェクトでは、次のことを行います。

Understand the theory and intuition behind Deep Neural Networks, Residual Nets, and Convolutional Neural Networks (CNNs)

Build a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend

Visualize the Activation Maps used by CNN to make predictions using Grad-CAM and Deploy the trained model using Tensorflow Serving

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 2 hour long hands-on project, we will train a deep learning model to predict the type of scenery in images. In addition, we are going to use a technique known as Grad-Cam to help explain how AI models think. This project could be practically used for detecting the type of scenery from the satellite images.

あなたが開発するスキル

  • Deep Learning
  • Machine Learning
  • Python Programming
  • Artificial Intelligence(AI)
  • Computer Vision

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Understand the theory and intuition behind Deep Neural Networks, Residual Nets, and Convolutional Neural Networks (CNNs)

  2. Apply Python libraries to import, pre-process and visualize images

  3. Perform data augmentation to improve model generalization capability

  4. Build a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend

  5. Compile and fit Deep Learning model to training data

  6. Assess the performance of trained CNN and ensure its generalization using various KPIs such as accuracy, precision and recall

  7. Understand the theory and intuition behind GradCam and Explainable AI

  8. Visualize the Activation Maps used by CNN to make predictions using Grad-CAM

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

EXPLAINABLE AI: SCENE CLASSIFICATION AND GRADCAM VISUALIZATION からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。