Sentimental Analysis on COVID-19 Tweets using python

4.6
35件の評価
提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Learn how to Preprocess text data for Sentimental Analysis

Learn how to Label text data with positive, negative and neutral sentiments

Learn to visualize the result of sentiment Analysis

Clock1 hour
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

By the end of this project you will learn how to preprocess your text data for sentimental analysis. So in this project we are going to use a Dataset consisting of data related to the tweets from the 24th of July, 2020 to the 30th of August 2020 with COVID19 hashtags. We are going to use python to apply sentimental analysis on the tweets to see people's reactions to the pandemic during the mentioned period. We are going to label the tweets as Positive, Negative, and neutral. After that, we are going to visualize the result to see the people's reactions on Twitter. Note: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

  • lambda
  • Python Programming
  • Plotly
  • Seaborn
  • Sentimental Analysis

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. importing our dataset

  2. preprocess and prepare our text data for Sentimental Analysis

  3. visualizing most common words using a bar chart.

  4. using NLTK module to produce Polarity scores for each tweet

  5. visualizing the result of our analysis using line chart

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

SENTIMENTAL ANALYSIS ON COVID-19 TWEETS USING PYTHON からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。