Statistical Data Visualization with Seaborn From UST

4.6

173件の評価

提供:

9,363人がすでに登録済みです

この無料ガイド付きプロジェクトでは、次のことを行います。

Produce and customize various chart types with Seaborn

Apply feature selection and feature extraction methods with scikit-learn

Build a boosted decision tree classifier with XGBoost

この実践的な経験を面接でアピールする

1.5 hours
中級
ダウンロード不要
分割画面ビデオ
英語
デスクトップのみ

Welcome to this Guided Project on Statistical Data Visualization with Seaborn, From UST. For more than 20 years, UST has worked side by side with the world’s best companies to make a real impact through transformation. Powered by technology, inspired by people and led by their purpose, they partner with clients from design to operation. With this Guided Project from UST, you can quickly build in-demand job skills and expand your career opportunities in the Data Science field. Producing visualizations is an important first step in exploring and analyzing real-world data sets. As such, visualization is an indispensable method in any data scientist's toolbox as well as a powerful tool to identify problems in analyses and for illustrating results. In this project, we will employ the statistical data visualization library, Seaborn, to discover and explore the relationships in the Breast Cancer Wisconsin (Diagnostic) data set. Using the exploratory data analysis (EDA) results from the Breast Cancer Diagnosis – Exploratory Data Analysis Guided Project, you will practice dropping correlated features, implement feature selection and utilize several feature extraction methods including; feature selection with correlation, univariate feature selection, recursive feature elimination, principal component analysis (PCA) and tree based feature selection methods. Lastly, we will build a boosted decision tree classifier with XGBoost to classify tumors as either malignant or benign. By the end of this Guided Project, you should feel more confident about working with data, creating visualizations for data analysis, and have practiced several methods which apply to a Data Scientist’s role. Let's get started!

必要事項

Some experience in the basic programming commands of Python and a general understanding of machine learning.

あなたが開発するスキル

  • Data Science

  • Machine Learning

  • Python Programming

  • Seaborn

  • Data Visualization (DataViz)

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Project Overview

  2. Importing Libraries and Data

  3. Dropping Correlated Columns from Feature List

  4. Classification using XGBoost (minimal feature selection)

  5. Univariate Feature Selection

  6. Recursive Feature Elimination with Cross-Validation

  7. Plot CV Scores vs Number of Features Selected

  8. Feature Extraction using Principal Component Analysis

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

STATISTICAL DATA VISUALIZATION WITH SEABORN FROM UST からの人気レビュー

すべてのレビューを見る

よくある質問

ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。

ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。

ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。

ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。

はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。

分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。