TensorFlow Serving with Docker for Model Deployment
47件の評価

4,464人がすでに登録済みです
Train and export TensorFlow Models for text classification
Serve and deploy models with TensorFlow Serving and Docker
Perform model inference with gRPC and REST endpoints
47件の評価
4,464人がすでに登録済みです
Train and export TensorFlow Models for text classification
Serve and deploy models with TensorFlow Serving and Docker
Perform model inference with gRPC and REST endpoints
This is a hands-on, guided project on deploying deep learning models using TensorFlow Serving with Docker. In this 1.5 hour long project, you will train and export TensorFlow models for text classification, learn how to deploy models with TF Serving and Docker in 90 seconds, and build simple gRPC and REST-based clients in Python for model inference. With the worldwide adoption of machine learning and AI by organizations, it is becoming increasingly important for data scientists and machine learning engineers to know how to deploy models to production. While DevOps groups are fantastic at scaling applications, they are not the experts in ML ecosystems such as TensorFlow and PyTorch. This guided project gives learners a solid, real-world foundation of pushing your TensorFlow models from development to production in no time! Prerequisites: In order to successfully complete this project, you should be familiar with Python, and have prior experience with building models with Keras or TensorFlow. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Deep Learning
Docker
TensorFlow Serving
Tensorflow
model deployment
ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。
Introduction and Demo Deployment
Load and Preprocess the Amazon Fine Foods Review Data
Build Text Classification Model using Keras and TensorFlow Hub
Define Training Procedure
Train and Export Model as Protobuf
Test Model
TensorFlow Serving with Docker
Setup a REST Client to Perform Model Predictions
Setup a gRPC Client to Perform Model Predictions
Versioning with TensorFlow Serving
ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です
分割画面のビデオで、講師が手順ごとにガイドします
BRにより
2021年4月22日Very well structured. It took a little longer that the 1.5 hours but the time was well spent. Nice job by the instructor!
ガイド付きプロジェクトを購入することによって、ガイド付きプロジェクトを完了するために必要なものすべてが得られます。これには、開始する必要のあるファイルとソフトウェアを含むWebブラウザを介したクラウドデスクトップワークスペースへのアクセスの他、専門家によるステップバイステップのビデオ講座が含まれます。
ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。
ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。
ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。
ガイド付きプロジェクトは払い戻しの対象外です。すべての返金ポリシーを表示する。
ガイド付きプロジェクトには学費援助が利用できません。
ガイド付きプロジェクトでは監査を使用できません。
ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。
はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。
分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。