Optimize TensorFlow Models For Deployment with TensorRT

4.6

55件の評価

提供:

3,211人がすでに登録済みです

この無料ガイド付きプロジェクトでは、次のことを行います。

Optimize Tensorflow models using TensorRT (TF-TRT)

Use TF-TRT to optimize several deep learning models at FP32, FP16, and INT8 precision

Observe how tuning TF-TRT parameters affects performance and inference throughput

この実践的な経験を面接でアピールする

1.5 hours
中級
ダウンロード不要
分割画面ビデオ
英語
デスクトップのみ

This is a hands-on, guided project on optimizing your TensorFlow models for inference with NVIDIA's TensorRT. By the end of this 1.5 hour long project, you will be able to optimize Tensorflow models using the TensorFlow integration of NVIDIA's TensorRT (TF-TRT), use TF-TRT to optimize several deep learning models at FP32, FP16, and INT8 precision, and observe how tuning TF-TRT parameters affects performance and inference throughput. Prerequisites: In order to successfully complete this project, you should be competent in Python programming, understand deep learning and what inference is, and have experience building deep learning models in TensorFlow and its Keras API. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

必要事項

It is assumed that are competent in Python programming and have prior experience with building deep learning models with TensorFlow and its Keras API

あなたが開発するスキル

  • Deep Learning

  • NVIDIA TensorRT (TF-TRT)

  • Python Programming

  • Tensorflow

  • keras

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Introduction and Project Overview

  2. Setup your TensorFlow and TensorRT Runtime

  3. Load the Data and Pre-trained InceptionV3 Model

  4. Create batched Input

  5. Load the TensorFlow SavedModel

  6. Get Baseline for Prediction Throughput and Accuracy

  7. Convert a TensorFlow saved model into a TF-TRT Float32 Graph

  8. Benchmark TF-TRT Float32

  9. Convert to TF-TRT Float16 and Benchmark

  10. Converting to TF-TRT INT8

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

OPTIMIZE TENSORFLOW MODELS FOR DEPLOYMENT WITH TENSORRT からの人気レビュー

すべてのレビューを見る

よくある質問

ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。

ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。

ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。

ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。

はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。

分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。