Tweet Emotion Recognition with TensorFlow

4.8
65件の評価
提供:
Coursera Project Network
3,705人がすでに登録済みです
この無料ガイド付きプロジェクトでは、次のことを行います。

Use a Tokenizer in TensorFlow

Pad and Truncate Sequences

Create and Train a Recurrent Neural Network

Use NLP and Deep Learning to perform Text Classification

この実践的な経験を面接でアピールする

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 2-hour long guided project, we are going to create a recurrent neural network and train it on a tweet emotion dataset to learn to recognize emotions in tweets. The dataset has thousands of tweets each classified in one of 6 emotions. This is a multi class classification problem in the natural language processing domain. We will be using TensorFlow as our machine learning framework. You will need prior programming experience in Python. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, recurrent neural networks, and optimization algorithms like gradient descent but want to understand how to use the Tensorflow to start performing natural language processing tasks like text classification. You should also have some basic familiarity with TensorFlow. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

必要事項

Prior programming experience in Python, familiarity with TensorFlow, theoretical understanding of recurrent neural networks.

あなたが開発するスキル

  • Natural Language Processing
  • Deep Learning
  • Machine Learning
  • Tensorflow
  • keras

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Introduction

  2. Setup and Imports

  3. Importing Data

  4. Tokenizer

  5. Padding and Truncating Sequences

  6. Preparing Labels

  7. Creating and Training RNN Model

  8. Model Evaluation

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

TWEET EMOTION RECOGNITION WITH TENSORFLOW からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。