Tweet Emotion Recognition with TensorFlow

4.7

109件の評価

提供:

6,604人がすでに登録済みです

この無料ガイド付きプロジェクトでは、次のことを行います。

Use a Tokenizer in TensorFlow

Pad and Truncate Sequences

Create and Train a Recurrent Neural Network

Use NLP and Deep Learning to perform Text Classification

この実践的な経験を面接でアピールする

2 hours
中級
ダウンロード不要
分割画面ビデオ
英語
デスクトップのみ

In this 2-hour long guided project, we are going to create a recurrent neural network and train it on a tweet emotion dataset to learn to recognize emotions in tweets. The dataset has thousands of tweets each classified in one of 6 emotions. This is a multi class classification problem in the natural language processing domain. We will be using TensorFlow as our machine learning framework. You will need prior programming experience in Python. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, recurrent neural networks, and optimization algorithms like gradient descent but want to understand how to use the Tensorflow to start performing natural language processing tasks like text classification. You should also have some basic familiarity with TensorFlow. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

必要事項

Prior programming experience in Python, familiarity with TensorFlow, theoretical understanding of recurrent neural networks.

あなたが開発するスキル

  • Natural Language Processing

  • Deep Learning

  • Machine Learning

  • Tensorflow

  • keras

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Introduction

  2. Setup and Imports

  3. Importing Data

  4. Tokenizer

  5. Padding and Truncating Sequences

  6. Preparing Labels

  7. Creating and Training RNN Model

  8. Model Evaluation

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

TWEET EMOTION RECOGNITION WITH TENSORFLOW からの人気レビュー

すべてのレビューを見る

よくある質問

ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。

ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。

ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。

ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。

はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。

分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。