Working with Big Data

提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Process a large dataset from NOAA showing hourly precipitation rates for a ten year period from the state of Wisconsin

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

By the end of this project, you will set up an environment for Big Data Development using Visual Studio Code, MongoDB and Apache Spark. You will then use the environment to process a large dataset from NOAA showing hourly precipitation rates for a ten year period from the state of Wisconsin. MongoDB is a widely used NoSQL database well suited for very large datasets or Big Data. It is highly scalable and adaptable as well. Apache Spark is used for efficient in-memory processing of Big Data.

あなたが開発するスキル

  • PySpark Queries
  • Mongodb
  • Python Programming
  • Big Data
  • PySpark

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Set up Apache Spark and MongoDB Environment.

  2. Create a Python PySpark program to read CSV data.

  3. Use Spark SQL to query in-memory data.

  4. Configure Apache Spark to connect to MongoDB.

  5. Persist data using Spark and MongoDB.

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。