この専門講座について

125,566 最近の表示
This specialization gives an introduction to deep learning, reinforcement learning, natural language understanding, computer vision and Bayesian methods. Top Kaggle machine learning practitioners and CERN scientists will share their experience of solving real-world problems and help you to fill the gaps between theory and practice. Upon completion of 7 courses you will be able to apply modern machine learning methods in enterprise and understand the caveats of real-world data and settings.
受講生の就業成果
50%
この専門講座終了後に新しいキャリアをスタートしました
43%
昇給や昇進につながった

共有できる証明書

修了時に証明書を取得

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

上級レベル

約10か月で修了

推奨6時間/週

英語

字幕:英語, 韓国語
受講生の就業成果
50%
この専門講座終了後に新しいキャリアをスタートしました
43%
昇給や昇進につながった

共有できる証明書

修了時に証明書を取得

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

上級レベル

約10か月で修了

推奨6時間/週

英語

字幕:英語, 韓国語

この専門講座には7コースあります。

コース1

コース 1

Introduction to Deep Learning

4.6
1,386件の評価
317件のレビュー
コース2

コース 2

How to Win a Data Science Competition: Learn from Top Kagglers

4.7
859件の評価
188件のレビュー
コース3

コース 3

Bayesian Methods for Machine Learning

4.6
528件の評価
155件のレビュー
コース4

コース 4

Practical Reinforcement Learning

4.1
339件の評価
97件のレビュー

講師

提供:

ロシア国立研究大学経済高等学院(National Research University Higher School of Economics) ロゴ

ロシア国立研究大学経済高等学院(National Research University Higher School of Economics)

業界パートナーのいずれかのロゴ

よくある質問

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • サブスクライブすると、7日間の無料トライアルを体験できます。この期間中は解約金なしでキャンセルできます。それ以降、払い戻しはありませんが、サブスクリプションをいつでもキャンセルできます。返金ポリシーをすべて表示します

  • はい。まず始めに興味のあるコースカードをクリックして登録します。コースに登録して修了することによって、共有できる修了証を取得するか、無料でコースを聴講してコースの教材を確認することができます。専門講座の一部であるコースにサブスクライブすると、専門講座全体に自動的にサブスクライブされます。進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

  • はい。受講料の支払いが難しい受講生に、Coursera(コーセラ)は学資援助を提供しています。左側の[登録]ボタンの下にある[学資援助]のリンクをクリックして申請してください。申請書の入力を促すメッセージが表示され、承認されると通知が届きます。キャップストーンプロジェクトを含む専門講座の各コースでこのステップを完了する必要があります。詳細

  • コースに登録すると専門講座のすべてのコースにアクセスできるようになり、コースを修了すると修了証を取得できます。コース内容の閲覧のみを希望する場合は、無料でコースを聴講することができます。受講料の支払いが難しい場合は、学資援助を申請することができます

  • このコースは完全にオンラインで提供されているため、実際に教室に出席する必要はありません。Webまたはモバイル機器からいつでもどこからでも講義、学習用教材、課題にアクセスできます。

  • As prerequisites we assume calculus and linear algebra (especially derivatives, matrices and operations with them), probability theory (random variables, distributions, moments), basic programming in python (functions, loops, numpy), basic machine learning (linear models, decision trees, boosting and random forests). Our intended audience are all people who are already familiar with basic machine learning and want to get a hand-on experience of research and development in the field of modern machine learning.

  • We recommend taking the “Intro to Deep Learning” course first as most of the subsequent courses will build on its material. All other courses can be taken in any order.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。