この専門講座について
3,873 最近の表示

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

中級レベル

約2か月で修了

推奨4時間/週

ロシア語

字幕:ロシア語

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

中級レベル

約2か月で修了

推奨4時間/週

ロシア語

字幕:ロシア語

専門講座のしくみ

コースを受講しましょう。

Coursera(コーセラ)の専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

実践型プロジェクト

すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。

修了証を取得

すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

how it works

この専門講座には4コースあります。

コース1

Введение в данные

4.7
100件の評価
15件のレビュー

Этот курс - первый в специализации "Анализ данных". Курс будет особенно полезен тем, кто имеет небольшой опыт работы с данными, или хочет освежить знания по теории вероятностей, математической статистике и типах данных. Сначала мы вспомним основы теории вероятностей и поговорим о случайных величинах и их свойствах, об основных распределениях случайных величин. Затем перейдем к основным характеристикам распределений: мерам центра и мерам вариативности. Далее обсудим основные типы шкал измерения признаков, а также основные ограничения, которые тип шкалы накладывает на применимые методы анализа данных. Третья неделя курса посвящена графическому анализу данных и способам визуализации распределений, индивидуальных или совместных. Завершающий модуль курса посвящен выборкам и способам их формирования, а также принципам и инструментам работы с пропущенными и неопределенными значениями. Вы сможете применить полученные знания, выполнив небольшой проект на реальных данных, предоставленных компанией 2GIS. Присоединяйтесь!

...
コース2

Исследование статистических взаимосвязей

4.7
52件の評価
4件のレビュー

Курс рассматривает способы и инструменты исследования статистических взаимосвязей между признаками. Вы научитесь оценивать, связаны ли признаки, а также делать обоснованные выводы о том, значима ли эта связь статистически. Связаны ли богатство и счастье, как связана потребительская активность людей с днем недели, способствует ли наличие аккаунта в социальных сетях популярности корпоративного сайта? На вопросы такого рода вы сможете ответить, пройдя этот курс. В первом модуле курса мы поговорим о статистических гипотезах, о способах их проверки и об основных статистических критериях, которые для этого разработаны. После этого мы рассмотрим практические инструменты выявления статистических взаимосвязей признаков, измеренных разными типами шкал, а также способы оценки значимости этих связей. Мы поговорим об основных коэффициентах взаимосвязи признаков, о том, как правильно выбрать коэффициент для решения конкретной задачи и покажем, как рассчитывать коэффициенты связи в статистических пакетах. В заключении мы подробно рассмотрим модель линейной регрессии, которая позволяет не только выявлять взаимосвязи между признаками, но и строить прогноз, и попрактикуемся в её построении.

...
コース3

Сравнение и создание групп

4.5
34件の評価
3件のレビュー

Курс посвящен статистическому сравнению характеристик групп и категорий. В первой части курса мы рассказываем о параметрических и непараметрических тестах сравнения средних и распределений, какие возможности и ограничения связаны с разными методами сравнения групп, говорим о сравнении связанных и несвязанных выборок. Различаются ли регионы (или аудитории) по доходу или возрасту? Как отличается пользовательская активность в разные времена года? Случайны различия между группами или закономерны? Курс научит искать ответы на такие вопросы. Вторая половина курсов посвящена выделению групп на основе эмпирических данных. Есть ли структура в данных? Можно ли говорить о том, что люди, компании или университеты группируются в отличительные, узнаваемые классы? Как найти и охарактеризовать такие группы? Мы покажем основные алгоритмы кластеризации, которые позволяют решать такие задачи. В практических видео курса мы покажем реализацию основных инструментов сравнения и выделения групп, а также предложим практические задачи и задания для отработки полученных навыков.

...
コース4

Тренды и классификации

4.5
33件の評価
3件のレビュー

В этом курсе мы поговорим о трендах и классификаторах. Анализ трендов помогает ответить на вопросы вроде: растут ли продажи, увеличивается ли количество пользователей сервиса? Если есть рост, то случайность это или закономерность? Есть ли в данных сезонные колебания? Как выделить тренд и как объяснить его? Также мы поговорим о факторном анализе, который позволяет найти скрытую переменную (или переменные), направляющие проявление множества видимых признаков. Как найти такие скрытые переменные и понять, что за ними стоит? В заключительной части курса поговорим о классификаторах, применение которых решает задачи отнесения объектов к тому или иному классу с определенной вероятностью, а также позволяет прогнозировать попадание нового объекта в определенный класс. Как предсказать исход события, зная основные характеристики действующего лица? Закончит ли слушатель курс, отдаст ли заемщик кредит? Как оценить точность прогноза и минимизировать ошибки? Мы разберемся с устройством обозначенных методов анализа данных и попрактикуемся в их применении.

...

講師

Avatar

Olga Echevskaya

доцент, кандидат социологических наук
Кафедра общей социологии ЭФ НГУ
Avatar

Наталья Галанова

Специалист по анализу данных
Компания 2GIS
Avatar

Виктор Дёмин

Специалист по анализу данных, кандидат технических наук
Компания 2GIS

業界パートナー

Industry Partner Logo #0

ノヴォシビルスク大学(Novosibirsk State University) について

Novosibirsk State University (NSU) is a research university located in Novosibirsk Akademgorodok, the world-famous scientific center in Siberia. 80% of NSU teachers are active researchers affiliated with the Russian Academy of Sciences; therefore education is closely linked to world-class science: our students get first-hand knowledge about scientific discoveries before they are published. Nearly 6000 students (including international students from 37 countries) are enrolled at undergraduate and graduate programs offered by 13 departments. The leading areas of NSU expertise are natural sciences, life sciences, physics, math, IT, and more....

よくある質問

  • はい。まず始めに興味のあるコースカードをクリックして登録します。コースに登録して修了することによって、共有できる修了証を取得するか、無料でコースを聴講してコースの教材を確認することができます。専門講座の一部であるコースにサブスクライブすると、専門講座全体に自動的にサブスクライブされます。進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

  • このコースは完全にオンラインで提供されているため、実際に教室に出席する必要はありません。Webまたはモバイル機器からいつでもどこからでも講義、学習用教材、課題にアクセスできます。

  • この専門講座では大学の単位は付与されませんが、一部の大学では専門講座修了証を単位として承認する場合があります。詳細については、大学にお問い合わせください。

  • Пройдя специализацию полностью, вы освоите набор основных навыков статистического анализа данных и сможете решать аналитические задачи разного уровня сложности: от описательных статистик и графиков до построения классификаций и прогнозов и оценки качества построенных моделей. Также вы научитесь использовать среды анализа данных, SPSS и R, для обработки и анализа данных.

  • Каждый курс специализации состоит из четырех недель обучения и одной недели практических заданий (выполнение проекта на реальных данных и оценка работ сокурсников). Таким образом, прохождение всей специализации займет в среднем от 3 до 5 месяцев в зависимости от мотивации, уровня подготовки и темпа обучения.

  • Базовые знания математики (знания в рамках школьной программы). Знакомство с основами теории вероятностей и математической статистики не обязательно, но облегчит прохождение специализации.

  • Специализация разрабатывалась так, что в порядке курсов есть логика. Первый курс задает основы для прохождения всех остальных курсов. Каждый следующий курс посвящен отдельным классам задач, сложность которых увеличивается от 2 к 4 курсу. Проходить курсы в случайном порядке можно, но только при наличии предварительной подготовки.

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。