About this 専門講座
100%オンラインコース

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。
フレキシブルなスケジュール

フレキシブルなスケジュール

柔軟性のある期限の設定および維持
初級レベル

初級レベル

修了時間

約3か月で修了

推奨6時間/週
利用可能な言語

英語

字幕:英語, スペイン語, 中国語(簡体), モンゴル語...

学習内容

  • Check

    Explain how data is used for recruiting and performance evaluation

  • Check

    Model supply and demand for various business scenarios

  • Check

    Solve business problems with data-driven decision-making

  • Check

    Understand the tools used to predict customer behavior

習得するスキル

Customer AnalyticsAnalyticsBusiness AnalyticsDecision Tree
100%オンラインコース

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。
フレキシブルなスケジュール

フレキシブルなスケジュール

柔軟性のある期限の設定および維持
初級レベル

初級レベル

修了時間

約3か月で修了

推奨6時間/週
利用可能な言語

英語

字幕:英語, スペイン語, 中国語(簡体), モンゴル語...

How the 専門講座 Works

コースを受講しましょう。

Coursera(コーセラ)の専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

実践型プロジェクト

すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。

修了証を取得

すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

how it works

この専門講座には5コースあります。

コース1

Customer Analytics

4.5
5,038件の評価
1,119件のレビュー
Data about our browsing and buying patterns are everywhere. From credit card transactions and online shopping carts, to customer loyalty programs and user-generated ratings/reviews, there is a staggering amount of data that can be used to describe our past buying behaviors, predict future ones, and prescribe new ways to influence future purchasing decisions. In this course, four of Wharton’s top marketing professors will provide an overview of key areas of customer analytics: descriptive analytics, predictive analytics, prescriptive analytics, and their application to real-world business practices including Amazon, Google, and Starbucks to name a few. This course provides an overview of the field of analytics so that you can make informed business decisions. It is an introduction to the theory of customer analytics, and is not intended to prepare learners to perform customer analytics. Course Learning Outcomes: After completing the course learners will be able to... Describe the major methods of customer data collection used by companies and understand how this data can inform business decisions Describe the main tools used to predict customer behavior and identify the appropriate uses for each tool Communicate key ideas about customer analytics and how the field informs business decisions Communicate the history of customer analytics and latest best practices at top firms...
コース2

Operations Analytics

4.7
2,594件の評価
500件のレビュー
This course is designed to impact the way you think about transforming data into better decisions. Recent extraordinary improvements in data-collecting technologies have changed the way firms make informed and effective business decisions. The course on operations analytics, taught by three of Wharton’s leading experts, focuses on how the data can be used to profitably match supply with demand in various business settings. In this course, you will learn how to model future demand uncertainties, how to predict the outcomes of competing policy choices and how to choose the best course of action in the face of risk. The course will introduce frameworks and ideas that provide insights into a spectrum of real-world business challenges, will teach you methods and software available for tackling these challenges quantitatively as well as the issues involved in gathering the relevant data. This course is appropriate for beginners and business professionals with no prior analytics experience....
コース3

People Analytics

4.5
2,472件の評価
434件のレビュー
People analytics is a data-driven approach to managing people at work. For the first time in history, business leaders can make decisions about their people based on deep analysis of data rather than the traditional methods of personal relationships, decision making based on experience, and risk avoidance. In this brand new course, three of Wharton’s top professors, all pioneers in the field of people analytics, will explore the state-of-the-art techniques used to recruit and retain great people, and demonstrate how these techniques are used at cutting-edge companies. They’ll explain how data and sophisticated analysis is brought to bear on people-related issues, such as recruiting, performance evaluation, leadership, hiring and promotion, job design, compensation, and collaboration. This course is an introduction to the theory of people analytics, and is not intended to prepare learners to perform complex talent management data analysis. By the end of this course, you’ll understand how and when hard data is used to make soft-skill decisions about hiring and talent development, so that you can position yourself as a strategic partner in your company’s talent management decisions. This course is intended to introduced you to Organizations flourish when the people who work in them flourish. Analytics can help make both happen. This course in People Analytics is designed to help you flourish in your career, too....
コース4

Accounting Analytics

4.5
1,557件の評価
283件のレビュー
Accounting Analytics explores how financial statement data and non-financial metrics can be linked to financial performance.  In this course, taught by Wharton’s acclaimed accounting professors, you’ll learn how data is used to assess what drives financial performance and to forecast future financial scenarios. While many accounting and financial organizations deliver data, accounting analytics deploys that data to deliver insight, and this course will explore the many areas in which accounting data provides insight into other business areas including consumer behavior predictions, corporate strategy, risk management, optimization, and more. By the end of this course, you’ll understand how financial data and non-financial data interact to forecast events, optimize operations, and determine strategy. This course has been designed to help you make better business decisions about the emerging roles of accounting analytics, so that you can apply what you’ve learned to make your own business decisions and create strategy using financial data. ...

講師

Avatar

Noah Gans

Anheuser-Busch Professor of Management Science, Professor of Operations, Information and Decisions
The Wharton School
Avatar

Ron Berman

Assistant Professor of Marketing
The Wharton School
Avatar

Senthil Veeraraghavan

Associate Professor of Operations, Information and Decisions
The Wharton School
Avatar

Peter Fader

Professor of Marketing and Co-Director of the Wharton Customer Analytics Initiative
The Wharton School
Avatar

Eric Bradlow

Professor of Marketing, Statistics, and Education, Chairperson, Wharton Marketing Department, Vice Dean and Director, Wharton Doctoral Program, Co-Director, Wharton Customer Analytics Initiative
The Wharton School
Avatar

Matthew Bidwell

Associate Professor of Management
The Wharton School
Avatar

Martine Haas

Associate Professor of Management
The Wharton School
Avatar

Wharton Teaching Staff

Educators
The Wharton School
Avatar

Cade Massey

Practice Professor
The Wharton School
Avatar

Sergei Savin

Associate Professor of Operations, Information and Decisions
The Wharton School
Avatar

Brian J Bushee

The Geoffrey T. Boisi Professor
Accounting
Avatar

Christopher D. Ittner

EY Professor of Accounting
Accounting
Avatar

Raghu Iyengar

Associate Professor of Marketing
The Wharton School

University of Pennsylvaniaについて

The University of Pennsylvania (commonly referred to as Penn) is a private university, located in Philadelphia, Pennsylvania, United States. A member of the Ivy League, Penn is the fourth-oldest institution of higher education in the United States, and considers itself to be the first university in the United States with both undergraduate and graduate studies. ...

よくある質問

  • はい。まず始めに興味のあるコースカードをクリックして登録します。コースに登録して修了することによって、共有できる修了証を取得するか、無料でコースを聴講してコースの教材を確認することができます。専門講座の一部であるコースにサブスクライブすると、専門講座全体に自動的にサブスクライブされます。進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

  • このコースは完全にオンラインで提供されているため、実際に教室に出席する必要はありません。Webまたはモバイル機器からいつでもどこからでも講義、学習用教材、課題にアクセスできます。

  • この専門講座では大学の単位は付与されませんが、一部の大学では専門講座修了証を単位として承認する場合があります。詳細については、大学にお問い合わせください。

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in about 5-6 months.

  • Each course in the Specialization is offered on a regular schedule, with sessions starting about once per month. If you don't complete a course on the first try, you can easily transfer to the next session, and your completed work and grades will carry over.

  • We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • You’ll gain a deeper understanding of how big data and analytics are used in four key areas: marketing (customer analytics), human resources and talent management (people analytics), operations, and finance. You can use this knowledge to create new business strategies using data, participate in conversations about analytics, transition to a new career, or improve your own business. You will also have a strong foundation for further study related to analytics and big data.

  • You will need a full-featured version of Microsoft Excel for some assignments. You should also have a working knowledge of Excel’s basic functions.

  • No previous knowledge or experience in business or analytics is required. This Specialization is designed for anyone interested in understanding how decisions are made using big data.

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。