この専門講座について

12,505 最近の表示
受講生の就業成果
67%
この専門講座終了後に新しいキャリアをスタートしました
33%
昇給や昇進につながった

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

中級レベル

約3か月で修了

推奨6時間/週

英語

字幕:英語, 韓国語

習得するスキル

Python ProgrammingR ProgrammingMapreduceSQL
受講生の就業成果
67%
この専門講座終了後に新しいキャリアをスタートしました
33%
昇給や昇進につながった

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

中級レベル

約3か月で修了

推奨6時間/週

英語

字幕:英語, 韓国語

専門講座の仕組み

コースを受講しましょう。

Coursera(コーセラ)の専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

実践型プロジェクト

すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。

修了証を取得

すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

how it works

この専門講座には4コースあります。

コース1

コース 1

Data Manipulation at Scale: Systems and Algorithms

4.3
712件の評価
157件のレビュー
コース2

コース 2

Practical Predictive Analytics: Models and Methods

4.1
292件の評価
55件のレビュー
コース3

コース 3

Communicating Data Science Results

3.6
130件の評価
36件のレビュー
コース4

コース 4

Data Science at Scale - Capstone Project

4.1
21件の評価
5件のレビュー

提供:

ワシントン大学(University of Washington) ロゴ

ワシントン大学(University of Washington)

レビュー

DATA SCIENCE AT SCALE からの人気レビュー

よくある質問

  • はい。まず始めに興味のあるコースカードをクリックして登録します。コースに登録して修了することによって、共有できる修了証を取得するか、無料でコースを聴講してコースの教材を確認することができます。専門講座の一部であるコースにサブスクライブすると、専門講座全体に自動的にサブスクライブされます。進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

  • このコースは完全にオンラインで提供されているため、実際に教室に出席する必要はありません。Webまたはモバイル機器からいつでもどこからでも講義、学習用教材、課題にアクセスできます。

  • この専門講座では大学の単位は付与されませんが、一部の大学では専門講座修了証を単位として承認する場合があります。詳細については、大学にお問い合わせください。

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 5 months.

  • Each course in the Specialization is offered on a regular schedule, with sessions starting about once per month. If you don't complete a course on the first try, you can easily transfer to the next session, and your completed work and grades will carry over.

  • We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • You will have experience working independently on data science challenges, analyzing real data sources on and off the web, potentially at terabyte-scale. You will be poised to pursue deeper technical study in software systems, scalable algorithms, statistics, machine learning, and visualization.

  • Learners will need intermediate programming experience (roughly equivalent to two college courses) and some familiarity with databases. Programming assignments throughout the Specialization will use a combination of Python, SQL, Scala, R, and Javascript; familiarity with one or more of these languages will be helpful.

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。