関連する経験が必要です。
Data Engineer, Big Data and ML on Google Cloud en Français専門講座
Google Cloud Platformのデータエンジニアリング. Boostez votre carrière dans le domaine de l'ingénierie des données
提供:
この専門講座について
応用学習プロジェクト
Cette spécialisation comporte des ateliers pratiques. Pour vous y inscrire, vous devez disposer d'un compte Google (un compte Gmail suffit) et créer un compte d'essai gratuit à Google Cloud Platform. L'essai gratuit est restreint à 12 mois d'utilisation ou à 300 $ de crédit (selon la limite atteinte en premier). Nous avons donc conçu cette spécialisation pour que vous puissiez la terminer en quatre semaines.
Ces ateliers vous permettent d'appliquer ce que vous apprenez dans les cours en vidéo. Les projets sont axés autour d'outils tels que Google BigQuery, qui sont utilisés et configurés dans Codelabs. Vous développerez ainsi une expérience pratique des concepts expliqués dans les modules.
関連する経験が必要です。
専門講座の仕組み
コースを受講しましょう。
Courseraの専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。
実践型プロジェクト
すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。
修了証を取得
すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

この専門講座には5コースあります。
Google Cloud Big Data and Machine Learning Fundamentals en Français
Ce cours intensif à la demande, d'une durée d'une semaine, présente aux participants les fonctionnalités de big data et de machine learning de Google Cloud Platform (GCP). Il présente rapidement Google Cloud Platform et explique plus en détail les fonctionnalités de traitement des données.
Modernizing Data Lakes and Data Warehouses with GCP en Français
Les deux principaux composants de tout pipeline de données sont les lacs de données et les entrepôts de données. Ce cours aborde les cas d'utilisation de chacun de ces systèmes de stockage, et présente en détail les solutions disponibles sur Google Cloud Platform. Il décrit également le rôle de Data Engineer et les atouts des pipelines de données pour l'entreprise, en plus d'expliquer l'intérêt de l'environnement cloud pour l'ingénierie de données. Vous vous familiariserez, dans le cadre d'exercices pratiques dans QwikLabs, aux concepts de lacs et d'entrepôts de données sur Google Cloud Platform.
Building Batch Data Pipelines on GCP en Français
En règle générale, les pipelines de données fonctionnent sur le modèle "Extraction et chargement" (EL), "Extraction, chargement et transformation" (ELT), ou "Extraction, transformation et chargement" (ETL). Dans ce cours, vous apprendrez où et quand appliquer ces différents modèles à des lots de données. Vous découvrirez également plusieurs technologies Google Cloud Platform permettant de transformer des données, y compris BigQuery, Spark exécuté sur Cloud Dataproc, les graphiques de pipelines dans Cloud Data Fusion et le traitement de données sans serveur avec Cloud Dataflow. Vous aurez en outre l'occasion de créer les composants d'un pipeline de données sur Google Cloud Platform dans le cadre d'un atelier pratique QwikLabs.
Building Resilient Streaming Analytics Systems on GCP en Français
*Remarque : Ceci est un nouveau cours proposant des contenus actualisés, différents de ceux que vous avez peut-être vus dans la précédente version de cette spécialisation.
提供:

Google Cloud
We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success.
よくある質問
返金ポリシーについて教えてください。
1つのコースだけに登録することは可能ですか?
学資援助はありますか?
無料でコースを受講できますか?
このコースは100%オンラインで提供されますか?実際に出席する必要のあるクラスはありますか?
専門講座を修了することで大学の単位は付与されますか?
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。