- Calculus
- vectors
- Data Analysis
- Modeling
- functional analysis
Integral Calculus through Data and Modeling専門講座
Learn integral Calculus through modelling.. Master integration techniques for single and multivariable functions.
提供:
学習内容
Model and analyze data using techniques of integration for both single and multivariable functions.
Numerical methods for integration
習得するスキル
この専門講座について
応用学習プロジェクト
In each module, learners will be provided with solved sample problems that they can use to build their skills and confidence followed by graded quizzes to demonstrate what they've learned. Through a cumulative project, students will apply their skills to model random chance events, evaluate a policy on air pollution regulation, and use calculus to estimate surface areas of land masses.
Students should have a working knowledge of differential calculus before starting this course.
Students should have a working knowledge of differential calculus before starting this course.
専門講座の仕組み
コースを受講しましょう。
Courseraの専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。
実践型プロジェクト
すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。
修了証を取得
すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

この専門講座には4コースあります。
Calculus through Data & Modelling: Series and Integration
This course continues your study of calculus by introducing the notions of series, sequences, and integration. These foundational tools allow us to develop the theory and applications of the second major tool of calculus: the integral. Rather than measure rates of change, the integral provides a means for measuring the accumulation of a quantity over some interval of input values. This notion of accumulation can be applied to different quantities, including money, populations, weight, area, volume, and air pollutants. The concepts in this course apply to many other disciplines outside of traditional mathematics. Through projects, we will apply the tools of this course to analyze and model real world data, and from that analysis give critiques of policy.
Calculus through Data & Modelling: Techniques of Integration
In this course, we build on previously defined notions of the integral of a single-variable function over an interval. Now, we will extend our understanding of integrals to work with functions of more than one variable. First, we will learn how to integrate a real-valued multivariable function over different regions in the plane. Then, we will introduce vector functions, which assigns a point to a vector. This will prepare us for our final course in the specialization on vector calculus. Finally, we will introduce techniques to approximate definite integrals when working with discrete data and through a peer reviewed project on, apply these techniques real world problems.
Calculus through Data & Modelling: Integration Applications
This course continues your study of calculus by focusing on the applications of integration. The applications in this section have many common features. First, each is an example of a quantity that is computed by evaluating a definite integral. Second, the formula for that application is derived from Riemann sums.
Calculus through Data & Modelling: Vector Calculus
This course continues your study of calculus by focusing on the applications of integration to vector valued functions, or vector fields. These are functions that assign vectors to points in space, allowing us to develop advanced theories to then apply to real-world problems. We define line integrals, which can be used to fund the work done by a vector field. We culminate this course with Green's Theorem, which describes the relationship between certain kinds of line integrals on closed paths and double integrals. In the discrete case, this theorem is called the Shoelace Theorem and allows us to measure the areas of polygons. We use this version of the theorem to develop more tools of data analysis through a peer reviewed project.
提供:

ジョンズ・ホプキンズ大学(Johns Hopkins University)
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.
よくある質問
返金ポリシーについて教えてください。
1つのコースだけに登録することは可能ですか?
学資援助はありますか?
無料でコースを受講できますか?
このコースは100%オンラインで提供されますか?実際に出席する必要のあるクラスはありますか?
専門講座を修了することで大学の単位は付与されますか?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。