- Predictive Modelling
- Financial Engineering
- Machine Learning
- Tensorflow
- Reinforcement Learning
- option pricing and risk management
- simple model for market dynamics
- Q-learning using financial problems
- optimal trading
- Portfolio Optimization
Machine Learning and Reinforcement Learning in Finance専門講座
Reinforce Your Career: Machine Learning in Finance. Extend your expertise of algorithms and tools needed to predict financial markets.
提供:
学習内容
Compare ML for Finance with ML in Technology (image and speech recognition, robotics, etc.)
Describe linear regression and classification models and methods of their evaluation
Explain how Reinforcement Learning is used for stock trading
Become familiar with popular approaches to modeling market frictions and feedback effects for option trading.
習得するスキル
この専門講座について
応用学習プロジェクト
The specialization is essentially in ML where all examples, home assignments and course projects deal with various problems in Finance (such as stock trading, asset management, and banking applications), and the choice of topics is respectively driven by a focus on ML methods that are used by practitioners in Finance. The specialization is meant to prepare the students to work on complex machine learning projects in finance that often require both a broad understanding of the whole field of ML, and understanding of appropriateness of different methods available in a particular sub-field of ML (for example, Unsupervised Learning) for addressing practical problems they might encounter in their work.
Basic math including calculus and linear algebra, basic probability theory and statistics, and programming skills in Python.
Basic math including calculus and linear algebra, basic probability theory and statistics, and programming skills in Python.
専門講座の仕組み
コースを受講しましょう。
Courseraの専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。
実践型プロジェクト
すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。
修了証を取得
すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

この専門講座には4コースあります。
Guided Tour of Machine Learning in Finance
This course aims at providing an introductory and broad overview of the field of ML with the focus on applications on Finance. Supervised Machine Learning methods are used in the capstone project to predict bank closures. Simultaneously, while this course can be taken as a separate course, it serves as a preview of topics that are covered in more details in subsequent modules of the specialization Machine Learning and Reinforcement Learning in Finance.
Fundamentals of Machine Learning in Finance
The course aims at helping students to be able to solve practical ML-amenable problems that they may encounter in real life that include: (1) understanding where the problem one faces lands on a general landscape of available ML methods, (2) understanding which particular ML approach(es) would be most appropriate for resolving the problem, and (3) ability to successfully implement a solution, and assess its performance.
Reinforcement Learning in Finance
This course aims at introducing the fundamental concepts of Reinforcement Learning (RL), and develop use cases for applications of RL for option valuation, trading, and asset management.
Overview of Advanced Methods of Reinforcement Learning in Finance
In the last course of our specialization, Overview of Advanced Methods of Reinforcement Learning in Finance, we will take a deeper look into topics discussed in our third course, Reinforcement Learning in Finance.
提供:

New York University
New York University is a leading global institution for scholarship, teaching, and research. Based in New York City with campuses and sites in 14 additional major cities across the world, NYU embraces diversity among faculty, staff and students to ensure the highest caliber, most inclusive educational experience.
よくある質問
返金ポリシーについて教えてください。
1つのコースだけに登録することは可能ですか?
学資援助はありますか?
無料でコースを受講できますか?
このコースは100%オンラインで提供されますか?実際に出席する必要のあるクラスはありますか?
専門講座を修了することで大学の単位は付与されますか?
What background knowledge is necessary?
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。