- Bash (Unix Shell)
- Database (DBMS)
- Web Application
- Python Programming
- SQL
- Vim
- Pandas
- Visual Studio Code
- Data Structure
- Data Management
- Linux
- Web Scraping
Python, Bash and SQL Essentials for Data Engineering専門講座
Launch Your Career in Data Engineering. Master foundational strategies and tools to become proficient in developing data engineering and machine learning solutions
提供:
学習内容
Develop data engineering solutions with a minimal and essential subset of the Python language and the Linux environment
Design scripts to connect and query a SQL database using Python
Use a scraping library in Python to read, identify and extract data from websites
Setup a provisioned Python project environment
習得するスキル
この専門講座について
応用学習プロジェクト
Each course includes integrated lab exercises using Visual Studio Code or Jupyter notebooks that give you an opportunity to practice the Python, Bash and SQL skills with real-world applications covered in each course. For each data engineering solution that you explore, you are also encouraged to create a demo video and GitHub repository of code that can be showcased in your digital portfolio for employers.By the end of this Specialization, you will have the foundational skills necessary to begin tackling more complex data engineering solutions.
Students should have beginner level Linux skills. No experience in Python is required.
Students should have beginner level Linux skills. No experience in Python is required.
専門講座の仕組み
コースを受講しましょう。
Courseraの専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。
実践型プロジェクト
すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。
修了証を取得
すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

この専門講座には4コースあります。
Python and Pandas for Data Engineering
In this first course of the Python, Bash and SQL Essentials for Data Engineering Specialization, you will learn how to set up a version-controlled Python working environment which can utilize third party libraries. You will learn to use Python and the powerful Pandas library for data analysis and manipulation. Additionally, you will also be introduced to Vim and Visual Studio Code, two popular tools for writing software. This course is valuable for beginning and intermediate students in order to begin transforming and manipulating data as a data engineer.
Linux and Bash for Data Engineering
In this second course of the Python, Bash and SQL Essentials for Data Engineering Specialization, you will learn the fundamentals of Linux necessary to perform data engineering tasks. Additionally, you will explore how to use both Bash and zsh configurations, and develop the syntax needed to interact and control Linux. These skills will allow you to manage and manipulate databases in a Bash environment.
Scripting with Python and SQL for Data Engineering
In this third course of the Python, Bash and SQL Essentials for Data Engineering Specialization, you will explore techniques to work effectively with Python and SQL. We will go through useful data structures in Python scripting and connect to databases like MySQL. Additionally, you will learn how to use a modern text editor to connect and run SQL queries against a real database, performing operations to load and extract data. Finally, you will use extracted data from websites using scraping techniques. These skills will allow you to work effectively when data is not readily available, or when spatial queries are required to extract useful information from databases.
Web Applications and Command-Line Tools for Data Engineering
In this fourth course of the Python, Bash and SQL Essentials for Data Engineering Specialization, you will build upon the data engineering concepts introduced in the first three courses to apply Python, Bash and SQL techniques in tackling real-world problems. First, we will dive deeper into leveraging Jupyter notebooks to create and deploy models for machine learning tasks. Then, we will explore how to use Python microservices to break up your data warehouse into small, portable solutions that can scale. Finally, you will build a powerful command-line tool to automate testing and quality control for publishing and sharing your tool with a data registry.
提供:

デューク大学(Duke University)
Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world.
よくある質問
返金ポリシーについて教えてください。
1つのコースだけに登録することは可能ですか?
学資援助はありますか?
無料でコースを受講できますか?
このコースは100%オンラインで提供されますか?実際に出席する必要のあるクラスはありますか?
専門講座を修了するのにどのくらいの期間かかりますか?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
専門講座を修了することで大学の単位は付与されますか?
What will I be able to do upon completing the Specialization?
Will I receive a transcript from Duke University for completing this course?
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。