このコースについて
582,742 最近の表示

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

中級レベル

約32時間で修了

推奨:6 weeks of study, 6–10 hours per week....

英語

字幕:英語, 韓国語, ロシア語

習得するスキル

Data StructureAlgorithmsJava Programming

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

中級レベル

約32時間で修了

推奨:6 weeks of study, 6–10 hours per week....

英語

字幕:英語, 韓国語, ロシア語

シラバス - 本コースの学習内容

1
10分で修了

Course Introduction

1件のビデオ (合計9分), 2 readings
1件のビデオ
2件の学習用教材
Welcome to Algorithms, Part I1 分
Lecture Slides
9時間で修了

Union−Find

5件のビデオ (合計51分), 2 readings, 2 quizzes
5件のビデオ
Quick-Union Improvements13 分
Union−Find Applications9 分
2件の学習用教材
Overview1 分
Lecture Slides
1の練習問題
Interview Questions: Union–Find (ungraded)
1時間で修了

Analysis of Algorithms

6件のビデオ (合計66分), 1 reading, 1 quiz
6件のビデオ
Order-of-Growth Classifications14 分
Theory of Algorithms11 分
Memory8 分
1件の学習用教材
Lecture Slides
1の練習問題
Interview Questions: Analysis of Algorithms (ungraded)
2
9時間で修了

Stacks and Queues

6件のビデオ (合計61分), 2 readings, 2 quizzes
6件のビデオ
Stacks16 分
Queues4 分
Generics9 分
Iterators7 分
Stack and Queue Applications (optional)13 分
2件の学習用教材
Overview1 分
Lecture Slides
1の練習問題
Interview Questions: Stacks and Queues (ungraded)
1時間で修了

Elementary Sorts

6件のビデオ (合計63分), 1 reading, 1 quiz
6件のビデオ
Shellsort10 分
Shuffling7 分
Convex Hull13 分
1件の学習用教材
Lecture Slides
1の練習問題
Interview Questions: Elementary Sorts (ungraded)
3
9時間で修了

Mergesort

5件のビデオ (合計49分), 2 readings, 2 quizzes
5件のビデオ
Mergesort23 分
Comparators6 分
Stability5 分
2件の学習用教材
Overview
Lecture Slides
1の練習問題
Interview Questions: Mergesort (ungraded)
1時間で修了

Quicksort

4件のビデオ (合計50分), 1 reading, 1 quiz
4件のビデオ
Quicksort19 分
System Sorts11 分
1件の学習用教材
Lecture Slides
1の練習問題
Interview Questions: Quicksort (ungraded)
4
9時間で修了

Priority Queues

4件のビデオ (合計74分), 2 readings, 2 quizzes
4件のビデオ
Heapsort14 分
Event-Driven Simulation (optional)22 分
2件の学習用教材
Overview10 分
Lecture Slides
1の練習問題
Interview Questions: Priority Queues (ungraded)
1時間で修了

Elementary Symbol Tables

6件のビデオ (合計77分), 1 reading, 1 quiz
6件のビデオ
Binary Search Trees19 分
Ordered Operations in BSTs10 分
Deletion in BSTs9 分
1件の学習用教材
Lecture Slides
1の練習問題
Interview Questions: Elementary Symbol Tables (ungraded)8 分
4.9
1106件のレビューChevron Right

31%

コース終了後に新しいキャリアをスタートした

33%

コースが具体的なキャリアアップにつながった

16%

昇給や昇進につながった

Algorithms, Part I からの人気レビュー

by RMJun 1st 2017

This is a great class. I learned / re-learned a ton. The assignments were challenge and left a definite feel of accomplishment. The programming environment and automated grading system were excellent.

by BJJun 3rd 2018

Good contents and the logic of the whole course structure is very clear for a novice like me. The weekly homework is also awesome. Would recommend to anyone who wants to learn about computer science.

講師

Avatar

Kevin Wayne

Phillip Y. Goldman '86 Senior Lecturer
Computer Science
Avatar

Robert Sedgewick

William O. Baker *39 Professor of Computer Science
Computer Science

プリンストン大学(Princeton University)について

Princeton University is a private research university located in Princeton, New Jersey, United States. It is one of the eight universities of the Ivy League, and one of the nine Colonial Colleges founded before the American Revolution....

よくある質問

  • Once you enroll, you’ll have access to all videos and programming assignments.

  • No. All features of this course are available for free.

  • No. As per Princeton University policy, no certificates, credentials, or reports are awarded in connection with this course.

  • Our central thesis is that algorithms are best understood by implementing and testing them. Our use of Java is essentially expository, and we shy away from exotic language features, so we expect you would be able to adapt our code to your favorite language. However, we require that you submit the programming assignments in Java.

  • Part I focuses on elementary data structures, sorting, and searching. Topics include union-find, binary search, stacks, queues, bags, insertion sort, selection sort, shellsort, quicksort, 3-way quicksort, mergesort, heapsort, binary heaps, binary search trees, red−black trees, separate-chaining and linear-probing hash tables, Graham scan, and kd-trees.

    Part II focuses on graph and string-processing algorithms. Topics include depth-first search, breadth-first search, topological sort, Kosaraju−Sharir, Kruskal, Prim, Dijkistra, Bellman−Ford, Ford−Fulkerson, LSD radix sort, MSD radix sort, 3-way radix quicksort, multiway tries, ternary search tries, Knuth−Morris−Pratt, Boyer−Moore, Rabin−Karp, regular expression matching, run-length coding, Huffman coding, LZW compression, and the Burrows−Wheeler transform.

  • Weekly exercises, weekly programming assignments, weekly interview questions, and a final exam.

    The exercises are primarily composed of short drill questions (such as tracing the execution of an algorithm or data structure), designed to help you master the material.

    The programming assignments involve either implementing algorithms and data structures (deques, randomized queues, and kd-trees) or applying algorithms and data structures to an interesting domain (computational chemistry, computational geometry, and mathematical recreation). The assignments are evaluated using a sophisticated autograder that provides detailed feedback about style, correctness, and efficiency.

    The interview questions are similar to those that you might find at a technical job interview. They are optional and not graded.

  • This course is for anyone using a computer to address large problems (and therefore needing efficient algorithms). At Princeton, over 25% of all students take the course, including people majoring in engineering, biology, physics, chemistry, economics, and many other fields, not just computer science.

  • The two courses are complementary. This one is essentially a programming course that concentrates on developing code; that one is essentially a math course that concentrates on understanding proofs. This course is about learning algorithms in the context of implementing and testing them in practical applications; that one is about learning algorithms in the context of developing mathematical models that help explain why they are efficient. In typical computer science curriculums, a course like this one is taken by first- and second-year students and a course like that one is taken by juniors and seniors.

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。