このコースについて
4.8
14件の評価
3件のレビュー

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

初級レベル

約8時間で修了

推奨:5 hours/week...

英語

字幕:英語

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

初級レベル

約8時間で修了

推奨:5 hours/week...

英語

字幕:英語

シラバス - 本コースの学習内容

1
1時間で修了

Big Data Rankings & Products

The first module “Big Data Rankings & Products” focuses on the relation and market shares of big data hardware, software, and professional services. This information provides an insight to how future industry, products, services, schools, and government organizations will be influenced by big data technology. To have a deeper view into the world’s top big data products line and service types, the lecture provides an overview on the major big data company, which include IBM, SAP, Oracle, HPE, Splunk, Dell, Teradata, Microsoft, Cisco, and AWS. In order to understand the power of big data technology, the difference of big data analysis compared to traditional data analysis is explained. This is followed by a lecture on the 4 V big challenges of big data technology, which deal with issues in the volume, variety, velocity, and veracity of the massive data. Based on this introduction information, big data technology used in adding global insights on investments, help locate new stores and factories, and run real-time recommendation systems by Wal-Mart, Amazon, and Citibank is introduced....
6件のビデオ (合計28分), 2 quizzes
6件のビデオ
1.1 Big Data Market Analysis1 分
1.2 IBM / 1.3 SAP8 分
1.4 Oracle / 1.5 Splunk / 1.6 Accenture / 1.7 Dell / 1.8 Teradata6 分
1.9 Microsoft / 1.10 Cisco / 1.11 AWS3 分
1.12 Big Data Landscape1 分
2の練習問題
Ungraded Quiz8 分
Graded Quiz
2
1時間で修了

Big Data & Hadoop

The second module “Big Data & Hadoop” focuses on the characteristics and operations of Hadoop, which is the original big data system that was used by Google. The lectures explain the functionality of MapReduce, HDFS (Hadoop Distributed FileSystem), and the processing of data blocks. These functions are executed on a cluster of nodes that are assigned the role of NameNode or DataNodes, where the data processing is conducted by the JobTracker and TaskTrackers, which are explained in the lectures. In addition, the characteristics of metadata types and the differences in the data analysis processes of Hadoop and SQL (Structured Query Language) are explained. Then the Hadoop Release Series is introduced which include the descriptions of Hadoop YARN (Yet Another Resource Negotiator), HDFS Federation, and HDFS HA (High Availability) big data technology....
8件のビデオ (合計68分), 2 quizzes
8件のビデオ
2.3 Big Data's 4 Vs / 2.4 How is Big Data being Used?8 分
2.5 HADOOP11 分
2.6 MapReduce vs. RDBMS6 分
2.7 MapReduce9 分
2.8 Hadoop vs. SQL(RDBMS & RDSMS)12 分
2.9 HDFS Enhancements4 分
2.10 Hadoop vs. Hadoop YARN6 分
2の練習問題
Ungraded Quiz12 分
Graded Quiz
3
2時間で修了

Spark

The third module “Spark” focuses on the operations and characteristics of Spark, which is currently the most popular big data technology in the world. The lecture first covers the differences in data analysis characteristics of Spark and Hadoop, then goes into the features of Spark big data processing based on the RDD (Resilient Distributed Datasets), Spark Core, Spark SQL, Spark Streaming, MLlib (Machine Learning Library), and GraphX core units. Details of the features of Spark DAG (Directed Acyclic Graph) stages and pipeline processes that are formed based on Spark transformations and actions are explained. Especially, the definition and advantages of lazy transformations and DAG operations are described along with the characteristics of Spark variables and serialization. In addition, the process of Spark cluster operations based on Mesos, Standalone, and YARN are introduced....
11件のビデオ (合計101分), 2 quizzes
11件のビデオ
3.2 Spark Architecture / 3.3 Spark Family9 分
3.4 Spark vs. Hadoop11 分
3.5 Spark RDD6 分
3.6 Spark Transformations / 3.7 Spark Actions / 3.8 Spark DAG12 分
3.9 Spark Programming7 分
3.10 Spark Core / 3.11 Spark Variables & Serialization7 分
3.12 Spark Cluster Operations / 3.13 Spark Standalone / 3.14 Spark Mesos14 分
3.15 Spark YARN9 分
3.16 Spark SQL / 3.17 Spark GraphX5 分
3.18 Relational DB & Graph DB12 分
2の練習問題
Ungraded Quiz
Graded Quiz
4
1時間で修了

Spark ML & Streaming

The fourth module “Spark ML & Streaming” focuses on how Spark ML (Machine Learning) works and how Spark streaming operations are conducted. The Spark ML algorithms include featurization, pipelines, persistence, and utilities which operate on the RDDs (Resilient Distributed Datasets) to extract information form the massive datasets. The lectures explain the characteristics of the DataFrame-based API, which is the primary ML API in the spark.ml package. Spark ML basic statistics algorithms based on correlation and hypothesis testing (P-value) are first introduced followed by the Spark ML classification and regression algorithms based on linear models, naive Bayes, and decision tree techniques. Then the characteristics of Spark streaming, streaming input and output, as well as streaming receiver types (which include basic, custom, and advanced) are explained, followed by how the Spark Streaming process and DStream (Discretized Stream) enable big data streaming operations for real-time and near-real-time applications....
4件のビデオ (合計31分), 2 quizzes
4件のビデオ
4.2 Spark ML Algorithms part 18 分
4.2 Spark ML Algorithms part 29 分
4.3 Spark Streaming10 分
2の練習問題
Ungraded Quiz
Graded Quiz

講師

Avatar

Jong-Moon Chung

Professor, School of Electrical & Electronic Engineering
Director, Communications & Networking Laboratory

延世大学校(Yonsei University)について

Yonsei University was established in 1885 and is the oldest private university in Korea. Yonsei’s main campus is situated minutes away from the economic, political, and cultural centers of Seoul’s metropolitan downtown. Yonsei has 3,500 eminent faculty members who are conducting cutting-edge research across all academic disciplines. There are 18 graduate schools, 22 colleges and 133 subsidiary institutions hosting a selective pool of students from around the world. Yonsei is proud of its history and reputation as a leading institution of higher education and research in Asia....

Emerging Technologies: From Smartphones to IoT to Big Dataの専門講座について

This Specialization is intended for researchers and business experts seeking state-of-the-art knowledge in advanced science and technology. The 4 courses cover details on Big Data (Hadoop, Spark, Storm), Smartphones, Smart Watches, Android, iOS, CPU/GPU/SoC, Mobile Communications (1G to 5G), Sensors, IoT, Wi-Fi, Bluetooth, LP-WAN, Cloud Computing, AR (Augmented Reality), Skype, YouTube, H.264/MPEG-4 AVC, MPEG-DASH, CDN, and Video Streaming Services. The Specialization includes projects on Big Data using IBM SPSS Statistics, AR applications, Cloud Computing using AWS (Amazon Web Service) EC2 (Elastic Compute Cloud), and Smartphone applications to analyze mobile communication, Wi-Fi, and Bluetooth networks. The course contents are for expert level research, design, development, industrial strategic planning, business, administration, and management....
Emerging Technologies: From Smartphones to IoT to Big Data

よくある質問

  • 修了証に登録すると、すべてのビデオ、テスト、およびプログラミング課題(該当する場合)にアクセスできます。ピアレビュー課題は、セッションが開始してからのみ、提出およびレビューできます。購入せずにコースを検討することを選択する場合、特定の課題にアクセスすることはできません。

  • コースに登録する際、専門講座のすべてのコースにアクセスできます。コースの完了時には修了証を取得できます。電子修了証が成果のページに追加され、そこから修了証を印刷したり、LinkedInのプロフィールに追加したりできます。コースの内容の閲覧のみを希望する場合は、無料でコースを聴講できます。

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。