このコースについて
52,322

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

中級レベル

約33時間で修了

推奨:8 weeks of study, 10-15 hours per week...

英語

字幕:英語

習得するスキル

Constraint ProgrammingBranch And BoundDiscrete OptimizationLinear Programming (LP)

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

中級レベル

約33時間で修了

推奨:8 weeks of study, 10-15 hours per week...

英語

字幕:英語

シラバス - 本コースの学習内容

1
2時間で修了

Welcome

These lectures and readings give you an introduction to this course: its philosophy, organization, and load. They also tell you how the assignments are a significant part of the class. This week covers the common input/output organization of the assignments, how they are graded, and how to succeed in this class....
4件のビデオ (合計43分), 3 readings, 1 quiz
4件のビデオ
Course Motivation - Indiana Jones, challenges, applications20 分
Course Introduction - philosophy, design, grading rubric11 分
Assignments Introduction & Any Integer9 分
3件の学習用教材
Start of Course Survey10 分
Socialize10 分
Course Syllabus10 分
2
7時間で修了

Knapsack

These lectures introduce optimization problems and some optimization techniques through the knapsack problem, one of the most well-known problem in the field. It discusses how to formalize and model optimization problems using knapsack as an example. It then reviews how to apply dynamic programming and branch and bound to the knapsack problem, providing intuition behind these two fundamental optimization techniques. The concept of relaxation and search are also discussed....
9件のビデオ (合計101分), 1 quiz
9件のビデオ
Knapsack 2 - greedy algorithms7 分
Knapsack 3 - modeling8 分
Knapsack 4 - dynamic programming17 分
Knapsack 5 - relaxation, branch and bound14 分
Knapsack 6 - search strategies, depth first, best first, least discrepancy14 分
Assignments Getting Started13 分
Knapsack & External Solver10 分
Exploring the Material - open course design, optimization landscape, picking your adventure10 分
3
17時間で修了

Constraint Programming

Constraint programming is an optimization technique that emerged from the field of artificial intelligence. It is characterized by two key ideas: To express the optimization problem at a high level to reveal its structure and to use constraints to reduce the search space by removing, from the variable domains, values that cannot appear in solutions. These lectures cover constraint programming in detail, describing the language of constraint programming, its underlying computational paradigm and how it can be applied in practice....
13件のビデオ (合計248分), 1 reading, 2 quizzes
13件のビデオ
CP 2 - propagation, arithmetic constraints, send+more=money26 分
CP 3 - reification, element constraint, magic series, stable marriage16 分
CP 4 - global constraint intuition, table constraint, sudoku19 分
CP 5 - symmetry breaking, BIBD, scene allocation18 分
CP 6 - redundant constraints, magic series, market split11 分
CP 7 - car sequencing, dual modeling18 分
CP 8 - global constraints in detail, knapsack, alldifferent33 分
CP 9 - search, first-fail, euler knight, ESDD25 分
CP 10 - value/variable labeling, domain splitting, symmetry breaking in search28 分
Graph Coloring6 分
Optimization Tools5 分
Set Cover8 分
1件の学習用教材
Optimization Tools10 分
4
13時間で修了

Local Search

Local search is probably the oldest and most intuitive optimization technique. It consists in starting from a solution and improving it by performing (typically) local perturbations (often called moves). Local search has evolved substantially in the last decades with a lot of attention being devoted on which moves to explore. These lectures explore the theory and practice of local search, from the concept of neighborhood and connectivity to meta-heuristics such as tabu search and simulated annealing....
10件のビデオ (合計191分), 1 quiz
10件のビデオ
LS 2 - swap neighborhood, car sequencing, magic square15 分
LS 3 - optimization, warehouse location, traveling salesman, 2-opt, k-opt23 分
LS 4 - optimality vs feasibility, graph coloring22 分
LS 5 - complex neighborhoods, sports scheduling21 分
LS 6 - escaping local minima, connectivity15 分
LS 7 - formalization, heuristics, meta-heuristics introduction22 分
LS 8 - iterated location search, metropolis heuristic, simulated annealing, tabu search intuition18 分
LS 9 - tabu search formalized, aspiration, car sequencing, n-queens26 分
Traveling Salesman10 分
4.9
58件のレビューChevron Right

40%

コース終了後に新しいキャリアをスタートした

38%

コースが具体的なキャリアアップにつながった

人気のレビュー

by AMFeb 6th 2017

I like the instructor teaching approach and the evaluation system, the subject itself took me a lot of effort and i think the LNS technique should be teached just after local search.

by KDSep 4th 2018

i wish there was 6 start rating so i can give this prof his due, he made a very complicated subject look very simple and easy to understand thanks a million

講師

Avatar

Dr. Carleton Coffrin

Adjunct Lecturer
Computing and Information Systems

メルボルン大学(The University of Melbourne)について

The University of Melbourne is an internationally recognised research intensive University with a strong tradition of excellence in teaching, research, and community engagement. Established in 1853, it is Australia's second oldest University....

よくある質問

  • 修了証に登録すると、すべてのビデオ、テスト、およびプログラミング課題(該当する場合)にアクセスできます。ピアレビュー課題は、セッションが開始してからのみ、提出およびレビューできます。購入せずにコースを検討することを選択する場合、特定の課題にアクセスすることはできません。

  • 修了証を購入する際、コースのすべての教材(採点課題を含む)にアクセスできます。コースを完了すると、電子修了証が成果のページに追加されます。そこから修了証を印刷したり、LinkedInのプロフィールに追加したりできます。コースの内容の閲覧のみを希望する場合は、無料でコースを聴講できます。

  • Good programming skills, knowledge of algorithms and linear algebra.

  • A minimal knowledge of python is necessary to integrate with the course infrastructure. Outside of that, students are free to use any language of their choice.

  • A motivated student spending the time on the programming assignment will succeed in this class.

  • At the discrete optimization store: http://www.zazzle.com.au/discreteoptimization

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。