Chevron Left
Machine Learning: Classification に戻る

ワシントン大学(University of Washington) による Machine Learning: Classification の受講者のレビューおよびフィードバック

4.7
3,671件の評価

コースについて

Case Studies: Analyzing Sentiment & Loan Default Prediction In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We've also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended)....

人気のレビュー

SM

2020年6月14日

A very deep and comprehensive course for learning some of the core fundamentals of Machine Learning. Can get a bit frustrating at times because of numerous assignments :P but a fun thing overall :)

SS

2016年10月15日

Hats off to the team who put the course together! Prof Guestrin is a great teacher. The course gave me in-depth knowledge regarding classification and the math and intuition behind it. It was fun!

フィルター:

Machine Learning: Classification: 76 - 100 / 575 レビュー

by SHAHAPURKAR S M

2020年6月15日

by Matthieu L

2016年3月14日

by sudheer n

2019年6月12日

by Prajna P

2017年12月18日

by Jenny H

2017年1月1日

by Joshua A

2016年9月20日

by Ronald B

2020年10月20日

by Renato V

2016年7月13日

by Thomas E

2016年5月12日

by Rehan U

2019年7月12日

by Krisda L

2017年6月24日

by Michele P

2017年8月23日

by Dave M

2020年4月30日

by Dhritiman S

2017年2月9日

by Phil B

2018年2月13日

by Kuntal G

2016年11月3日

by Shazia B

2019年3月25日

by Fakrudeen A A

2018年9月15日

by Ji H K

2021年8月9日

by Cenk B

2020年4月28日

by Marcus V M d S

2017年10月16日

by ZHE C

2017年3月26日

by Niyas M

2016年10月29日

by Leon A

2016年3月10日

by lokeshkunuku

2019年6月11日