Chevron Left
Machine Learning: Classification に戻る

ワシントン大学(University of Washington) による Machine Learning: Classification の受講者のレビューおよびフィードバック

4.7
3,671件の評価

コースについて

Case Studies: Analyzing Sentiment & Loan Default Prediction In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We've also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended)....

人気のレビュー

SM

2020年6月14日

A very deep and comprehensive course for learning some of the core fundamentals of Machine Learning. Can get a bit frustrating at times because of numerous assignments :P but a fun thing overall :)

SS

2016年10月15日

Hats off to the team who put the course together! Prof Guestrin is a great teacher. The course gave me in-depth knowledge regarding classification and the math and intuition behind it. It was fun!

フィルター:

Machine Learning: Classification: 176 - 200 / 575 レビュー

by Darryl L

2016年10月27日

by Ning Z

2016年3月20日

by TANVEER A 2

2022年6月25日

by Shawon P

2021年7月22日

by Michael O T

2019年11月29日

by Suresh K P

2017年12月19日

by Daopeng S

2016年4月12日

by Daniel Z

2016年3月8日

by Xavi R

2021年1月19日

by Vladimir V

2017年6月14日

by James M

2016年7月20日

by Javier A

2018年11月25日

by Kazi N H

2016年6月23日

by Chandan D

2018年8月25日

by Zuozhi W

2017年2月8日

by Pankaj K

2017年9月25日

by Zhongkai M

2019年2月12日

by courage s

2018年10月22日

by Jean-Etienne K

2016年7月24日

by akashkr1498

2019年5月19日

by Alexandre N

2016年12月20日

by eric g

2016年3月21日

by Swapnil A

2020年9月6日

by Karthik M

2019年6月1日

by Srinivas J

2016年11月12日