Chevron Left
Big Data Analysis with Scala and Spark に戻る

スイス連邦工科大学ローザンヌ校(École Polytechnique Fédérale de Lausanne) による Big Data Analysis with Scala and Spark の受講者のレビューおよびフィードバック

4.7
2,551件の評価

コースについて

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

人気のレビュー

CC

2017年6月7日

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

BP

2019年11月28日

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

フィルター:

Big Data Analysis with Scala and Spark: 476 - 500 / 506 レビュー

by Rug

2022年3月10日

by Benjamin S

2017年9月12日

by Gian U L

2017年5月7日

by Aaron H

2018年1月22日

by Virapat K

2021年2月2日

by Serg D

2020年4月14日

by Aitor S G

2021年2月24日

by Nikita V

2017年5月11日

by Moiseenko A

2020年5月6日

by Kyle J

2019年5月21日

by Virginija D

2017年8月7日

by Jinyi S

2021年5月9日

by Hans R

2020年10月25日

by Mortatha K H

2020年7月8日

by Ioannis A

2018年9月25日

by Cherniaev A

2021年2月7日

by José F

2017年4月17日

by Vladyslav S

2017年5月6日

by Prathviraj S C

2020年2月25日

by Mikołaj J

2017年6月5日

by Owen N

2017年4月9日

by Vassileios L

2021年6月5日

by rafael f o

2020年6月7日

by Dan O

2017年3月25日

by Марко И

2017年4月10日