Analyze Text Data with Yellowbrick
81件の評価

4,795人がすでに登録済みです
Use visual diagnostic tools from Yellowbrick to steer your machine learning workflow
Vectorize text data using TF-IDF
Cluster documents using embedding techniques and appropriate metrics
4,795人がすでに登録済みです
Use visual diagnostic tools from Yellowbrick to steer your machine learning workflow
Vectorize text data using TF-IDF
Cluster documents using embedding techniques and appropriate metrics
Welcome to this project-based course on Analyzing Text Data with Yellowbrick. Tasks such as assessing document similarity, topic modelling and other text mining endeavors are predicated on the notion of "closeness" or "similarity" between documents. In this course, we define various distance metrics (e.g. Euclidean, Hamming, Cosine, Manhattan, etc) and understand their merits and shortcomings as they relate to document similarity. We will apply these metrics on documents within a specific corpus and visualize our results. By the end of this course, you will be able to confidently use visual diagnostic tools from Yellowbrick to steer your machine learning workflow, vectorize text data using TF-IDF, and cluster documents using embedding techniques and appropriate metrics. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, Yellowbrick, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Data Science
Natural Language Processing
Machine Learning
Python Programming
Data Visualization (DataViz)
ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。
Introduction and Loading the Corpus
Vectorizing the Documents
Clustering Similar Documents with Squared Euclidean Distance And Euclidean Distance
Manhattan (aka “Taxicab” or “City Block”) Distance
Bray Curtis Dissimilarity and Canberra Distance
Cosine Distance
What Metrics Not to Use
Omitting Class Labels - Using KMeans Clustering
ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です
分割画面のビデオで、講師が手順ごとにガイドします
KLにより
2021年4月1日Could have run through the theory behind the library functions a bit more as a refresher but for brevity's sake it is alright the instructor did not.
AHにより
2020年4月13日It was an amazing test and this lecture i like same with my area teaching.
ガイド付きプロジェクトを購入することによって、ガイド付きプロジェクトを完了するために必要なものすべてが得られます。これには、開始する必要のあるファイルとソフトウェアを含むWebブラウザを介したクラウドデスクトップワークスペースへのアクセスの他、専門家によるステップバイステップのビデオ講座が含まれます。
ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。
ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。
ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。
ガイド付きプロジェクトは払い戻しの対象外です。すべての返金ポリシーを表示する。
ガイド付きプロジェクトには学費援助が利用できません。
ガイド付きプロジェクトでは監査を使用できません。
ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。
はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。
分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。