Build a Clustering Model using PyCaret

提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

build an end-to-end clustering model using PyCaret

Learn how to interpret a clustering model

Clock2 hours
Beginner初級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 1-hour long project-based course, you will create an end-to-end clustering model using PyCaret a low-code Python open-source Machine Learning library. The goal is to build a model that can segment a wholesale customers based on their historical purchases. You will learn how to automate the major steps for building, evaluating, comparing and interpreting Machine Learning Models for clustering. Here are the main steps you will go through: frame the problem, get and prepare the data, discover and visualize the data, create the transformation pipeline, build, evaluate, interpret and deploy the model. This guided project is for seasoned Data Scientists who want to build a accelerate the efficiency in building POC and experiments by using a low-code library. It is also for Citizen data Scientists (professionals working with data) by using the low-code library PyCaret to add machine learning models to the analytics toolkit. To be successful in this project, you should be familiar with Python and the basic concepts on Machine Learning.

あなたが開発するスキル

  • Python Programming
  • Machine Learning
  • PyCaret
  • clustering

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Introduction and setup of the environment

  2. Load and prepare the data

  3. Evaluate Model

  4. Preprocess Data

  5. Build Clustering Model

  6. Evaluate Model

  7. Interpret and Explain Model

  8. Deploy Model

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。