Predict Employee Turnover with scikit-learn

4.4
163件の評価
提供:
Coursera Project Network
3,405人がすでに登録済みです
このガイド付きプロジェクトでは、次のことを行います。

Apply decision trees and random forests with scikit-learn to classification problems

Interpret decision trees and random forest models using feature importances

Tune model hyperparamters to improve classification accuracy

Create interactive, GUI components in Jupyter notebooks using widgets

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

Welcome to this project-based course on Predicting Employee Turnover with Decision Trees and Random Forests using scikit-learn. In this project, you will use Python and scikit-learn to grow decision trees and random forests, and apply them to an important business problem. Additionally, you will learn to interpret decision trees and random forest models using feature importance plots. Leverage Jupyter widgets to build interactive controls, you can change the parameters of the models on the fly with graphical controls, and see the results in real time! This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed.

あなたが開発するスキル

Decision TreeMachine LearningRandom ForestclassificationScikit-Learn

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Introduction and Importing Libraries

  2. Exploratory Data Analysis

  3. Encode Categorical Features

  4. Visualize Class Imbalance

  5. Create Training and Test Sets

  6. Build a Decision Tree Classifier with Interactive Controls

  7. Build a Decision Tree Classifier with Interactive Controls (Continued)

  8. Build a Random Forest Classifier with Interactive Controls

  9. Feature Importance and Evaluation Metrics

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

PREDICT EMPLOYEE TURNOVER WITH SCIKIT-LEARN からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

  • ガイド付きプロジェクトを購入することによって、ガイド付きプロジェクトを完了するために必要なものすべてが得られます。これには、開始する必要のあるファイルとソフトウェアを含むWebブラウザを介したクラウドデスクトップワークスペースへのアクセスの他、専門家によるステップバイステップのビデオ講座が含まれます。

  • ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。

  • ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。

  • ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。

  • ガイド付きプロジェクトは払い戻しの対象外です。すべての返金ポリシーを表示する

  • ガイド付きプロジェクトには学費援助が利用できません。

  • ガイド付きプロジェクトでは監査を使用できません。

  • ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。

  • はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。

  • 分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。