Facial Expression Recognition with PyTorch

Load pretrained state of the art model
Create train and eval function to write the training loop
この実践的な経験を面接でアピールする
Load pretrained state of the art model
Create train and eval function to write the training loop
この実践的な経験を面接でアピールする
In this 2-hour long guided-project course, you will load a pretrained state of the art model CNN and you will train in PyTorch to classify facial expressions. The data that you will use, consists of 48 x 48 pixel grayscale images of faces and there are seven targets (angry, disgust, fear, happy, sad, surprise, neutral). Furthermore, you will apply augmentation for classification task to augment images. Moreover, you are going to create train and evaluator function which will be helpful to write training loop. Lastly, you will use best trained model to classify expression given any input image.
Prior programming experience in Python and basic pytorch. Theoretical knowledge of Convolutional Neural Network and Training process (Optimization)
Deep Learning
Convolutional Neural Network
pytorch
classification
Computer Vision
ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。
Set up colab runtime
Configurations
Load Dataset
Load dataset into batches
Create Model
Create Train and Eval Function
Training Loop
ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です
分割画面のビデオで、講師が手順ごとにガイドします
ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。
ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。
ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。
ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。
はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。
分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。