Handling Missing Values in R using tidyr

提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Drop missing values using the drop_na() function

Replace missing values using the replace_na() function

Fill missing values using the fill() function

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

Missing data can be a “serious” headache for data analysts and scientists. This project-based course Handling Missing Values in R using tidyr is for people who are learning R and who seek useful ways for data cleaning and manipulation in R. In this project-based course, we will not only talk about missing values, but we will spend a great deal of our time here hands-on on how to handle missing value cases using the tidyr package. Be rest assured that you will learn a ton of good work here. By the end of this 2-hour-long project, you will calculate the proportion of missing values in the data and select columns that have missing values. Also, you will be able to use the drop_na(), replace_na(), and fill() function in the tidyr package to handle missing values. By extension, we will learn how to chain all the operations using the pipe function. This project-based course is an intermediate level course in R. Therefore, to complete this project, it is required that you have prior experience with using R. I recommend that you should complete the projects titled: “Getting Started with R” and “Data Manipulation with dplyr in R“ before you take this current project. These introductory projects in using R will provide every necessary foundation to complete this current project. However, if you are comfortable with using R, please join me on this wonderful ride! Let’s get our hands dirty!

あなたが開発するスキル

  • Missing Data
  • Data Manipulation
  • tidyr
  • R Programming
  • dplyr

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Getting Started

  2. Import and Explore the data sets

  3. Select Missing Variables

  4. Drop Missing Values

  5. Replace Missing Values

  6. Fill Missing Values

  7. Fill Missing Values - Exercises

  8. Wrap up - Chain all operations

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。