Machine Learning para series temporales con ARIMA, SARIMA...

提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Conocer los fundamentos de las series temporales

Entrenar diferentes modelos estadísticos de series temporales como AR, MA, ARMA, ARIMA, SARIMA

Predecir datos futuros en base a series de tiempo

Clock2 horas
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dotsスペイン語
Laptopデスクトップのみ

Proyecto aplicado y práctico para aprender a entrenar modelos de Machine Learning como: AR, MA, ARMA, ARIMA, autoARIMA, SARIMA y autoSARIMA para predecir series temporales con Python.

あなたが開発するスキル

  • ARMA
  • Machine Learning
  • Autoregressive Integrated Moving Average (ARIMA)
  • Time Series
  • SARIMA

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Introducción a las series temporales

  2. Tipos de datos de series temporales

  3. Preprocesamiento y análisis de series temporales

  4. Ejercicio aplicado. Preprocesamiento y análisis

  5. Técnicas para transformar series en estacionarias

  6. Modelo de autoregresión (AR) y métricas de evaluación

  7. Ejercicio aplicado. Modelo AR

  8. Modelo de media móvil (MA) y media móvil autorregresiva (ARMA)

  9. Ejercicio aplicado MA y ARMA

  10. Modelo de ARIMA y autoARIMA

  11. Modelo de SARIMA y auto SARIMA

  12. Ejercicio aplicado. ARIMA y SARIMA

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。