Object Detection Using Facebook's Detectron2

提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Create an Object Detection Model using Facebook's Detectron2.

Make Inferences Using the Object Detection Model

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 2-hour long project-based course, you will learn how to train an Object Detection Model using Facebook's Detectron2. Detectron2 is a research platform and a production library for deep learning, built by Facebook AI Research (FAIR). We will be building an Object Detection Language Identification Model to identify English and Hindi texts written which can be extended to different use cases. We will look at the entire cycle of Model Development and Evaluation in Detectron2. We will first look at how to load a dataset, visualize it and prepare it as an input to the Deep Learning Model. We will then look at how we can build a Faster R-CNN model in Detectron2 and customize it. We will then configure the parameters & hyperparameters of the model. We will then move on to training the Model and subsequently to model inference and evaluation. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

  • Computer Vision
  • Object Detection
  • Deep Learning
  • Detectron2

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Introduction to Detectron2 & Setup

  2. Preparing and loading the Dataset

  3. Visualizing the Dataset

  4. Build and Customizing the Training Model

  5. Configuring & Training the Model

  6. Inference & Evaluation

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。