Naive Bayes 101: Resume Selection with Machine Learning

提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Create a pipeline to remove stop-words, punctuation, and perform tokenization

Understand the theory and intuition behind Naive Bayes classifiers

Train a Naive Bayes Classifier and assess its performance

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this project, we will build a Naïve Bayes Classifier to predict whether a given resume text is flagged or not. Our training data consist of 125 resumes with 33 flagged resumes and 92 non flagged resumes. This project could be practically used to screen resumes in companies.

あなたが開発するスキル

  • Data Cleansing
  • Machine Learning
  • NLP
  • Artificial Intelligence(AI)
  • Computer Science

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Task 1: Understand the Problem Statement and Business Case

  2. Task 2: Import libraries and datasets

  3. Task 3: Perform exploratory data analysis

  4. Task 4: Perform data cleaning

  5. Task 5: Visualize cleaned datasets

  6. Task 6: Prepare the data by applying count vectorization

  7. Task 7: Understand the intuition behind Naive Bayes Classifier - Part #1

  8. Task 8: Understand the intuition behind Naive Bayes Classifier - Part #2

  9. Task 9: Train a Naive Bayes classifier model

  10. Task 10: Assess trained model performance

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。