Logistic Regression 101: US Household Income Classification

提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Understand the theory and intuition behind Logistic Regression and XGBoost models.

Build and train Logistic Regression and XGBoost models to classify the Income Bracket of US Household.

Assess the performance of trained model and ensure its generalization using various KPIs such as accuracy, precision and recall.

Clock2 Hours
Beginner初級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this hands-on project, we will train Logistic Regression and XG-Boost models to predict whether a particular person earns less than 50,000 US Dollars or more than 50,000 US Dollars annually. This data was obtained from U.S. Census database and consists of features like occupation, age, native country, capital gain, education, and work class. By the end of this project, you will be able to: - Understand the theory and intuition behind Logistic Regression and XG-Boost models - Import key Python libraries, dataset, and perform Exploratory Data Analysis like removing missing values, replacing characters, etc. - Perform data visualization using Seaborn. - Prepare the data to increase the predictive power of Machine Learning models by One-Hot Encoding, Label Encoding, and Train/Test Split - Build and train Logistic Regression and XG-Boost models to classify the Income Bracket of U.S. Household. - Assess the performance of trained model and ensure its generalization using various KPIs such as accuracy, precision and recall. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

  • Deep Learning
  • Machine Learning
  • Python Programming
  • Artificial Intelligene(AI)
  • classification

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Understand the problem statement and business case

  2. Import Datasets and Libraries

  3. Exploratory Data Analysis

  4. Perform Data Visualization

  5. Prepare the data to feed the model

  6. Understand the Problem Statement and Business Case

  7. Build and assess the performance of Logistic Regression models

  8. Build and assess the performance of XG-Boost model

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。