Understand the theory and intuition behind Logistic Regression and XGBoost models.
Build and train Logistic Regression and XGBoost models to classify the Income Bracket of US Household.
Assess the performance of trained model and ensure its generalization using various KPIs such as accuracy, precision and recall.
In this hands-on project, we will train Logistic Regression and XG-Boost models to predict whether a particular person earns less than 50,000 US Dollars or more than 50,000 US Dollars annually. This data was obtained from U.S. Census database and consists of features like occupation, age, native country, capital gain, education, and work class. By the end of this project, you will be able to: - Understand the theory and intuition behind Logistic Regression and XG-Boost models - Import key Python libraries, dataset, and perform Exploratory Data Analysis like removing missing values, replacing characters, etc. - Perform data visualization using Seaborn. - Prepare the data to increase the predictive power of Machine Learning models by One-Hot Encoding, Label Encoding, and Train/Test Split - Build and train Logistic Regression and XG-Boost models to classify the Income Bracket of U.S. Household. - Assess the performance of trained model and ensure its generalization using various KPIs such as accuracy, precision and recall. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。
Understand the problem statement and business case
Import Datasets and Libraries
Exploratory Data Analysis
Perform Data Visualization
Prepare the data to feed the model
Understand the Problem Statement and Business Case
Build and assess the performance of Logistic Regression models
Build and assess the performance of XG-Boost model
ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です
分割画面のビデオで、講師が手順ごとにガイドします
ガイド付きプロジェクトを購入すると何を行えるようになりますか?
ガイド付きプロジェクトを購入することによって、ガイド付きプロジェクトを完了するために必要なものすべてが得られます。これには、開始する必要のあるファイルとソフトウェアを含むWebブラウザを介したクラウドデスクトップワークスペースへのアクセスの他、専門家によるステップバイステップのビデオ講座が含まれます。
ガイド付きプロジェクトはデスクトップとモバイル機器で利用できますか?
ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。
ガイド付きプロジェクトの講師にはどのような方がいらっしゃいますか?
ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。
完成したガイド付きプロジェクトから成果物をダウンロードできますか?
ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。
返金ポリシーについて教えてください。
ガイド付きプロジェクトは払い戻しの対象外です。すべての返金ポリシーを表示する。
学資援助はありますか?
ガイド付きプロジェクトには学費援助が利用できません。
ガイド付きプロジェクトを監査して、ビデオ部分を無料で見ることはできますか?
ガイド付きプロジェクトでは監査を使用できません。
このガイド付きプロジェクトを行うにはどれくらいの経験が必要ですか?
ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。
特別なソフトウェアをインストールせずに、Webブラウザでこのガイド付きプロジェクトを完了できますか?
はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。
ガイド付きプロジェクトでの学習体験はどのようなものでしょうか?
分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。
さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。